
 

Unit - 1 
 

What Is Data Mining? 
 

Data mining refers to extracting or mining knowledge from large amounts of data. The term is 

actually a misnomer. Thus, data mining should have been more appropriately named as 

knowledge mining which emphasis on mining from large amounts of data. 

 
It is the computational process of discovering patterns in large data sets involving methods at 

the intersection of artificial intelligence, machine learning, statistics, and database systems. 

The overall goal of the data mining process is to extract information from a data set and 

transform it into an understandable structure for further use. 

 
The key properties of data mining are    

 Automatic discovery of patterns  

 Prediction of likely outcomes 

 Creation of actionable information 

 Focus on large datasets and databases 

 

The Scope of Data Mining 

Data mining derives its name from the similarities between searching for valuable business 

information in a large database — for example, finding linked products in gigabytes of store 

scanner data — and mining a mountain for a vein of valuable ore. Both processes require either 

sifting through an immense amount of material, or intelligently probing it to find exactly where the 

value resides. Given databases of sufficient size and quality, data mining technology can generate 

new business opportunities by providing these capabilities: 

Automated prediction of trends and behaviors. Data mining automates the process of finding 

predictive information in large databases. Questions that traditionally required extensive hands- on 

analysis can now be answered directly from the data — quickly. A typical example of a predictive 



 

problem is targeted marketing. Data mining uses data on past promotional mailings to identify the 

targets most likely to maximize return on investment in future mailings. Other predictive problems 

include forecasting bankruptcy and other forms of default, and identifying segments of a 

population likely to respond similarly to given events. 

 
Automated discovery of previously unknown patterns. Data mining tools sweep through 

databases and identify previously hidden patterns in one step. An example of pattern discovery is 

the analysis of retail sales data to identify seemingly unrelated products that are often purchased 

together. Other pattern discovery problems include detecting fraudulent credit card transactions 

and identifying anomalous data that could represent data entry keying errors. 

 
Tasks of Data Mining 

Data mining involves six common classes of tasks: 

 Anomaly detection (Outlier/change/deviation detection) – The identification of unusual data 

records, that might be interesting or data errors that require further investigation. 

 Association rule learning (Dependency modelling) – Searches for relationships between 

variables. For example, a supermarket might gather data on customer purchasing habits. Using 

association rule learning, the supermarket can determine which products are frequently bought 

together and use this information for marketing purposes. This is sometimes referred to as 

market basket analysis. 

 Clustering – is the task of discovering groups and structures in the data that are in some way or 

another "similar", without using known structures in the data. 

 Classification – is the task of generalizing known structure to apply to new data. For example, 

an e-mail program might attempt to classify an e-mail as "legitimate" or as "spam". 

 Regression – attempts to find a function which models the data with the least error.  

 Summarization – providing a more compact representation of the data set, including 

visualization and report generation. 



 

Architecture of Data Mining 

A typical data mining system may have the following major components. 
 
 

 
 
1. Knowledge Base: 
 
 

This is the domain knowledge that is used to guide the search or evaluate the interestingness of 

resulting patterns. Such knowledge can include concept hierarchies, used to organize attributes or 

attribute values into different levels of abstraction. Knowledge such as user beliefs, which can be 

used to assess a pattern’s interestingness based on its unexpectedness, may also be included. 

Other examples of domain knowledge are additional interestingness constraints or thresholds, and 

metadata (e.g., describing data from multiple heterogeneous sources). 

 



 

2. Data Mining Engine: 
 
This is essential to the data mining system and ideally consists of a set of functional modules for 

tasks such as characterization, association and correlation analysis, classification, prediction, 

cluster analysis, outlier analysis, and evolution analysis. 

 
3. Pattern Evaluation Module: 
 
This component typically employs interestingness measures interacts with the data mining modules 

so as to focus the search toward interesting patterns. It may use interestingness thresholds to 

filterout discovered patterns. Alternatively, the pattern evaluation module may be integrated with 

the mining module, depending on the implementation of the datamining method used. For efficient 

data mining, it is highly recommended to push the evaluation of pattern interestingness as deep as 

possible into the mining process so as to confine the search to only the interesting patterns. 

 
4. User interface: 
 
This module communicates between users and the data mining system, allowing the user to interact 

with the system by specifying a data mining query or task, providing information to help focus the 

search, and performing exploratory datamining based on the intermediate data mining results. In 

addition, this component allows the user to browse database and data warehouse schemas or data 

structures, evaluate mined patterns, and visualize the patterns in different forms. 

Data Mining Process: 

Data Mining is a process of discovering various models, summaries, and derived values from a 

given collection of data. 

The general experimental procedure adapted to data-mining problems involves the following steps: 

 
1. State the problem and formulate the hypothesis  
 
Most data-based modeling studies are performed in a particular application domain. Hence, 

domain-specific knowledge and experience are usually necessary in order to come up with a 

meaningful problem statement. Unfortunately, many application studies tend to focus on the data-



 

mining technique at the expense of a clear problem statement. In this step, a modeler usually 

specifies a set of variables for the unknown dependency and, if possible, a general form of this 

dependency as an initial hypothesis. There may be several hypotheses formulated for a single 

problem at this stage. The first step requires the combined expertise of an application domain and a 

data-mining model. In practice, it usually means a close interaction between the data-mining expert 

and the application expert. In successful data-mining applications, this cooperation does not stop in 

the initial phase; it continues during the entire data-mining process. 

 
2. Collect the data 
 
This step is concerned with how the data are generated and collected. In general, there are two 

distinct possibilities. The first is when the data-generation process is under the control of an expert 

(modeler): this approach is known as a designed experiment. The second possibility is when the 

expert cannot influence the data- generation process: this is known as the observational approach. 

An observational setting, namely, random data generation, is assumed in most data-mining 

applications. Typically, the sampling distribution is completely unknown after data are collected, 

or it is partially and implicitly given in the data-collection procedure. It is very important, however, 

to understand how data collection affects its theoretical distribution, since such a priori knowledge 

can be very useful for modeling and, later, for the final interpretation of results. Also, it is 

important to make sure that the data used for estimating a model and the data used later for testing 

and applying a model come from the same, unknown, sampling distribution. If this is not the case, 

the estimated model cannot be successfully used in a final application of the results. 

 
3. Preprocessing the data 
 
In the observational setting, data are usually "collected" from the existing databases, data 

warehouses, and data marts. Data preprocessing usually includes at least two common tasks: 

 
1. Outlier detection (and removal) – Outliers are unusual data values that are not consistent with 

most observations. Commonly, outliers result from measurement errors, coding and recording 

errors, and, sometimes, are natural, abnormal values. Such nonrepresentative samples can 



 

seriously affect the model produced later. There are two strategies for dealing with outliers: 

 
a. Detect and eventually remove outliers as a part of the preprocessing phase, or 

b. Develop robust modeling methods that are insensitive to outliers. 
 
 
2. Scaling, encoding, and selecting features – Data preprocessing includes several steps such as 

variable scaling and different types of encoding. For example, one feature with the range [0, 1] 

and the other with the range [−100, 1000] will not have the same weights in the applied 

technique; they will also influence the final data-mining results differently. Therefore, it is 

recommended to scale them and bring both features to the same weight for further analysis. 

Also, application-specific encoding methods usually achieve dimensionality reduction by 

providing a smaller number of informative features for subsequent data modeling.  

 
These two classes of preprocessing tasks are only illustrative examples of a large spectrum of 

preprocessing activities in a data-mining process. 

 
Data-preprocessing steps should not be considered completely independent from other data-

mining phases. In every iteration of the data-mining process, all activities, together, could 

define new and improved data sets for subsequent iterations. Generally, a good preprocessing 

method provides an optimal representation for a data-mining technique by incorporating a 

priori knowledge in the form of application-specific scaling and encoding. 

 
4. Estimate the model 
 

The selection and implementation of the appropriate data-mining technique is the main task in 

this phase. This process is not straightforward; usually, in practice, the implementation is based 

on several models, and selecting the best one is an additional task. The basic principles of 

learning and discovery from data are given in Chapter 4 of this book. Later, Chapter 5 through 

13 explain and analyze specific techniques that are applied to perform a successful learning 

process from data and to develop an appropriate model. 

5. Interpret the model and draw conclusions 



 

In most cases, data-mining models should help in decision making. Hence, such models need to 

be interpretable in order to be useful because humans are not likely to base their decisions on 

complex "black-box" models. Note that the goals of accuracy of the model and accuracy of its 

interpretation are somewhat contradictory. Usually, simple models are more interpretable, but 

they are also less accurate. Modern data-mining methods are expected to yield highly accurate 

results using high dimensional models. The problem of interpreting these models, also very 

important, is considered a separate task, with specific techniques to validate the results. A user 

does not want hundreds of pages of numeric results. He does not understand them; he cannot 

summarize, interpret, and use them for successful decision making. 

 
 

 
The Data mining Process 

 
Classification of Data mining Systems: 
 

The data mining system can be classified according to the following criteria: 

 Database Technology    

 Statistics 

 Machine Learning    



 

 Information Science 

 Visualization 

 Other Disciplines 
 

Some Other Classification Criteria: 
 

 Classification according to kind of databases mine 
 Classification according to kind of knowledge 

mined 
 Classification according to kinds of techniques utilized 
 Classification according to applications adapted 

 

Classification according to kind of databases mined 
 
We can classify the data mining system according to kind of databases mined. Database system 

can be classified according to different criteria such as data models, types of data etc. And the data 

mining system can be classified accordingly. For example if we classify the database according to 

data model then we may have a relational, transactional, object- relational, or data warehouse 

mining system. 

 
Classification according to kind of knowledge mined 

 
We can classify the data mining system according to kind of knowledge mined. It is means data 

mining system are classified on the basis of functionalities such as: 

 

 Characterization  

 Discrimination 

 Association and 
Correlation Analysis 
Classification 

 Prediction Clustering 

 Outlier Analysis 

 Evolution Analysis 
 



 

Classification according to kinds of techniques utilized 
 
We can classify the data mining system according to kind of techniques used. We can describes 

these techniques according to degree of user interaction involved or the methods of analysis 

employed. 

 
Classification according to applications adapted 

 
We can classify the data mining system according to application adapted. These applications are as 

follows: 

 Finance 
 Telecommunications 

  DNA 

 Stock Markets  

 Email 

 

Major Issues in Data Mining: 
 

Mining different kinds of knowledge in databases. - The need of different users is not the 

same. And Different user may be in interested in different kind of knowledge. Therefore, it is 

necessary for data mining to cover broad range of knowledge discovery task. 

Interactive mining of knowledge at multiple levels of abstraction. - The data mining 

process needs to be interactive because it allows users to focus the search for patterns, providing 

and refining data mining requests based on returned results. 

Incorporation of background knowledge. - To guide discovery process and to express the 

discovered patterns, the background knowledge can be used. Background knowledge may be 

used to express the discovered patterns not only in concise terms but at multiple level of 

abstraction. 

Data mining query languages and ad hoc data mining. - Data Mining Query language that 

allows the user to describe ad hoc mining tasks, should be integrated with a data warehouse 

query language and optimized for efficient and flexible data mining. 



 

Presentation and visualization of data mining results. - Once the patterns are discovered it 

needs to be expressed in high level languages, visual representations. These representations 

should be easily understandable by the users. 

Handling noisy or incomplete data. - The data cleaning methods are required that can handle 

the noise, incomplete objects while mining the data regularities. If data cleaning methods are not 

there then the accuracy of the discovered patterns will be poor. 

Pattern evaluation. - It refers to interestingness of the problem. The patterns discovered 

should be interesting because either they represent common knowledge or lack novelty. 

 Efficiency and scalability of data mining algorithms. - In order to effectively extract the 

information from huge amount of data in databases, data mining algorithm must be efficient 

and scalable. 

   Parallel, distributed, and incremental mining algorithms. - The factors such as huge size 

of databases, wide distribution of data, and complexity of data mining methods motivate the 

development of parallel and distributed data mining algorithms. These algorithms divide the 

data into partitions which is further processed parallel. Then the results from the partitions is 

merged. The incremental algorithms, updates databases without having mine the data again 

from scratch. 

 

Knowledge Discovery in Databases (KDD) 
 

Some people treat data mining same as Knowledge discovery while some people view data 

mining essential step in process of knowledge discovery. Here is the list of steps involved 

in knowledge discovery process: 

 

    Data Cleaning - In this step the noise and inconsistent data is removed. 

    Data Integration - In this step multiple data sources are combined. 

    Data Selection - In this step relevant to the analysis task are retrieved from the database. 

    Data Transformation - In this step data are transformed or consolidated into forms 



 

appropriate for mining by performing summary or aggregation operations. 

    Data Mining - In this step intelligent methods are applied in order to extract data 

patterns. 

    Pattern Evaluation - In this step, data patterns are evaluated. 

    Knowledge Presentation - In this step, knowledge is represented. 
 

The following diagram shows the process of knowledge discovery process: 

 
 

Architecture of KDD 
 

Data Warehouse: 
 

A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of 

data in support of management's decision-making process. 

Subject-Oriented: A data warehouse can be used to analyze a particular subject area. For 

example, "sales" can be a particular subject. 



 

Integrated: A data warehouse integrates data from multiple data sources. For example, source 

A and source B may have different ways of identifying a product, but in a data warehouse, there 

will be only a single way of identifying a product. 

 
Time-Variant: Historical data is kept in a data warehouse. For example, one can retrieve data 

from 3 months, 6 months, 12 months, or even older data from a data warehouse. This contrasts 

with a transactions system, where often only the most recent data is kept. For example, a 

transaction system may hold the most recent address of a customer, where a data warehouse can 

hold all addresses associated with a customer. 

 
Non-volatile: Once data is in the data warehouse, it will not change. So, historical data in a data 

warehouse should never be altered. 

 
Data Warehouse Design Process: 

 
A data warehouse can be built using a top-down approach, a bottom-up approach, or a 

combination of both. 

   The top-down approach starts with the overall design and planning. It is useful in cases 

where the technology is mature and well known, and where the business problems that must 

be solved are clear and well understood. 

   The bottom-up approach starts with experiments and prototypes. This is useful in the early 

stage of business modeling and technology development. It allows an organization to move 

forward at considerably less expense and to evaluate the benefits of the technology before 

making significant commitments. 

   In the combined approach, an organization can exploit the planned and strategic nature of 

the top-down approach while retaining the rapid implementation and opportunistic 

application of the bottom-up approach. 

The warehouse design process consists of the following steps: 
 

   Choose a business process to model, for example, orders, invoices, shipments, inventory, 



 

account administration, sales, or the general ledger. If the business process is organizational 

and involves multiple complex object collections, a data warehouse model should be 

followed. However, if the process is departmental and focuses on the analysis of one kind of 

business process, a data mart model should be chosen. 

   Choose the grain of the business process. The grain is the fundamental, atomic level of data 

to be represented in the fact table for this process, for example, individual transactions, 

individual daily snapshots, and so on. 

   Choose the dimensions that will apply to each fact table record. Typical dimensions are 

time, item, customer, supplier, warehouse, transaction type, and status. 

   Choose the measures that will populate each fact table record. Typical measures are 

numeric additive quantities like dollars sold and units sold. 

 

A Three Tier Data Warehouse Architecture: 
 



 

Tier-1: 
The bottom tier is a warehouse database server that is almost always a relational database system. 

Back-end tools and utilities are used to feed data into the bottom tier from operational databases or 

other external sources (such as customer profile information provided by external consultants). 

These tools and utilities perform data extraction, cleaning, and transformation (e.g., to merge 

similar data from different sources into a unified format), as well as load and refresh functions to 

update the data warehouse. The data are extracted using application program interfaces known as 

gateways. A gateway is supported by the underlying DBMS and allows client programs to generate 

SQL code to be executed at a server. 

 
Examples of gateways include ODBC (Open Database Connection) and OLEDB (Open Linking 

and Embedding for Databases) by Microsoft and JDBC (Java Database Connection). 

This tier also contains a metadata repository, which stores information about the data warehouse 

and its contents. 

 
Tier-2: 
 
The middle tier is an OLAP server that is typically implemented using either a relational OLAP 

(ROLAP) model or a multidimensional OLAP. 

     OLAP model is an extended relational DBMS that maps operations on multidimensional data to 

standard relational operations. 

     A multidimensional OLAP (MOLAP) model, that is, a special-purpose server that directly 

implements multidimensional data and operations. 

Tier-3: 
 
The top tier is a front-end client layer, which contains query and reporting tools, analysis 

tools, and/or data mining tools (e.g., trend analysis, prediction, and so on). 

 

Data Warehouse Models: 
 

There are three data warehouse models. 



 

 
1. Enterprise warehouse: 

   An enterprise warehouse collects all of the information about subjects spanning the 

entire organization. 

   It provides corporate-wide data integration, usually from one or more operational 

systems or external information providers, and is cross-functional in scope. 

   It typically contains detailed data as well as summarized data, and can range in size from 

a few gigabytes to hundreds of gigabytes, terabytes, or beyond. 

   An enterprise data warehouse may be implemented on traditional mainframes, computer 

super servers, or parallel architecture platforms. It requires extensive business modeling 

and may take years to design and build. 

2. Data mart: 
 

   A data mart contains a subset of corporate-wide data that is of value to a specific group 

of users. The scope is confined to specific selected subjects. For example, a marketing 

data mart may confine its subjects to customer, item, and sales. The data contained in 

data marts tend to be summarized. 

   Data marts are usually implemented on low-cost departmental servers that are 

UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is more 

likely to be measured in weeks rather than months or years. However, it may involve 

complex integration in the long run if its design and planning were not enterprise-wide. 

   Depending on the source of data, data marts can be categorized as independent or 

dependent. Independent data marts are sourced from data captured from one or more 

operational systems or external information providers, or from data generated locally 

within a particular department or geographic area. Dependent data marts are source 

directly from enterprise data warehouses. 

 

3. Virtual warehouse: 
 

   A virtual warehouse is a set of views over operational databases. For efficient query 



 

processing, only some of the possible summary views may be materialized. 

   A virtual warehouse is easy to build but requires excess capacity on operational database 

servers. 

Meta Data Repository: 
 

Metadata are data about data. When used in a data warehouse, metadata are the data that define 

warehouse objects. Metadata are created for the data names and definitions of the given 

warehouse. Additional metadata are created and captured for timestamping any extracted data, 

the source of the extracted data, and missing fields that have been added by data cleaning or 

integration processes. 

 
A metadata repository should contain the following: 

 
 

   A description of the structure of the data warehouse, which includes the warehouse schema, 

view, dimensions, hierarchies, and derived data definitions, as well as data mart locations and 

contents. 

   Operational metadata, which include data lineage (history of migrated data and the sequence of 

transformations applied to it), currency of data (active, archived, or purged), and monitoring 

information (warehouse usage statistics, error reports, and audit trails). 

   The algorithms used for summarization, which include measure and dimension definition 

algorithms, data on granularity, partitions, subject areas, aggregation, summarization, and 

predefined queries and reports. 

   The mapping from the operational environment to the data warehouse, which includes source 

databases and their contents, gateway descriptions, data partitions, data extraction, cleaning, 

transformation rules and defaults, data refresh and purging rules, and security (user 

authorization and access control). 

   Data related to system performance, which include indices and profiles that improve data 

access and retrieval performance, in addition to rules for the timing and scheduling of refresh, 



 

update, and replication cycles. 

   Business metadata, which include business terms and definitions, data 

ownership information, and charging policies. 

 

OLAP (Online analytical Processing): 
 

   OLAP is an approach to answering multi-dimensional analytical (MDA) queries swiftly. 

   OLAP is part of the broader category of business intelligence, which also encompasses 

relational database, report writing and data mining. 

   OLAP tools enable users to analyze multidimensional data interactively from multiple 

perspectives. 

 

OLAP consists of three basic analytical operations: 
 

 Consolidation (Roll-Up) 

 Drill-Down 

 Slicing And Dicing 
 

   Consolidation involves the aggregation of data that can be accumulated and computed in 

one or more dimensions. For example, all sales offices are rolled up to the sales 

department or sales division to anticipate sales trends. 

   The drill-down is a technique that allows users to navigate through the details. For 

instance, users can view the sales by individual products that make up a region’s sales. 

   Slicing and dicing is a feature whereby users can take out (slicing) a specific set of data 

of the OLAP cube and view (dicing) the slices from different viewpoints. 

Types of OLAP: 

1. Relational OLAP (ROLAP): 
 

   ROLAP works directly with relational databases. The base data and the dimension 

tables are stored as relational tables and new tables are created to hold the aggregated 



 

information. It depends on a specialized schema design. 

   This methodology relies on manipulating the data stored in the relational database to 

give the appearance of traditional OLAP's slicing and dicing functionality. In essence, 

each action of slicing and dicing is equivalent to adding a "WHERE" clause in the 

SQL statement. 

   ROLAP tools do not use pre-calculated data cubes but instead pose the query to the 

standard relational database and its tables in order to bring back the data required to 

answer the question. 

   ROLAP tools feature the ability to ask any question because the methodology does 

not limit to the contents of a cube. ROLAP also has the ability to drill down to the 

lowest level of detail in the database. 

 
Multidimensional OLAP (MOLAP): 

 

MOLAP is the 'classic' form of OLAP and is sometimes referred to as just OLAP. 

 MOLAP stores this data in an optimized multi-dimensional array storage, rather than in a 

relational database. Therefore, it requires the pre-computation and storage of information in 

the cube - the operation known as processing. 

 MOLAP tools generally utilize a pre-calculated data set referred to as a data cube. 

The data cube contains all the possible answers to a given range of questions. 
 

   MOLAP tools have a very fast response time and the ability to quickly write back 

data into the data set. 

 

2. Hybrid OLAP (HOLAP): 
 

   There is no clear agreement across the industry as to what constitutes Hybrid OLAP, 

except that a database will divide data between relational and specialized storage. 

   For example, for some vendors, a HOLAP database will use relational tables to hold 

the larger quantities of detailed data, and use specialized storage for at least some 



 

aspects of the smaller quantities of more-aggregate or less-detailed data. 

   HOLAP addresses the shortcomings of MOLAP and ROLAP by combining the 

capabilities of both approaches. 

HOLAP tools can utilize both pre-calculated cubes and relational data sources. 

 

Data Preprocessing: 
 

Data Integration: 
 

It combines data from multiple sources into a coherent data store, as in data warehousing. These 

sources may include multiple databases, data cubes, or flat files. 

The data integration systems are formally defined as triple<G,S,M>  

Where G: The global schema 

S: Heterogeneous source of schemas 
M: Mapping between the queries of source and global schema 
 

 

Issues in Data integration: 
 

1. Schema integration and object matching: 
 

How can the data analyst or the computer be sure that customer id in one database and 

customer number in another reference to the same attribute 



 

2. Redundancy: 
 

An attribute (such as annual revenue, for instance) may be redundant if it can be derived 

from another attribute or set of attributes. Inconsistencies in attribute or dimension 

naming can also cause redundancies in the resulting data set. 

3. detection and resolution of data value conflicts: 
 

For the same real-world entity, attribute values from different sources may differ. 
 

Data Transformation: 
 

In data transformation, the data are transformed or consolidated into forms appropriate for 

mining. 

Data transformation can involve the following: 
 

   Smoothing, which works to remove noise from the data. Such techniques include 

binning, regression, and clustering. 

   Aggregation, where summary or aggregation operations are applied to the data. For 

example, the daily sales data may be aggregated so as to compute monthly and annual 

total amounts. This step is typically used in constructing a data cube for analysis of the 

data at multiple granularities. 

   Generalization of the data, where low-level or ―primitive‖ (raw) data are replaced by 

higher-level concepts through the use of concept hierarchies. For example, categorical 

attributes, like street, can be generalized to higher-level concepts, like city or country. 

   Normalization, where the attribute data are scaled so as to fall within a small specified 

range, such as 1:0 to 1:0, or 0:0 to 1:0. 

   Attribute construction (or feature construction), where new attributes are constructed 

and added from the given set of attributes to help the mining process. 

 

Data Reduction: 
 

Data reduction techniques can be applied to obtain a reduced representation of the data set that 



 

is much smaller in volume, yet closely maintains the integrity of the original data. That is, 

mining on the reduced data set should be more efficient yet produce the same (or almost the 

same) analytical results. 

Strategies for data reduction include the following: 

   Data cube aggregation, where aggregation operations are applied to the data in the 

construction of a data cube. 

   Attribute subset selection, where irrelevant, weakly relevant, or redundant attributes or 

dimensions may be detected and removed. 

   Dimensionality reduction, where encoding mechanisms are used to reduce the dataset 

size. 

   Numerosity reduction, where the data are replaced or estimated by alternative, smaller 

data representations such as parametric models (which need store only the model 

parameters instead of the actual data) or nonparametric methods such as clustering, 

sampling, and the use of histograms. 

   Discretization and concept hierarchy generation, where raw data values for attributes 

are replaced by ranges or higher conceptual levels. Data discretization is a form of 

numerosity reduction that is very useful for the automatic generation of concept 

hierarchies. Discretization and concept hierarchy generation are powerful tools for 

datamining, in that they allow the mining of data at multiple levels of abstraction. 

 

  



 

Unit-2 
 

Association Rule Mining: 

Association rule mining is a popular and well researched method for discovering interesting 

relations between variables in large databases. 

It is intended to identify strong rules discovered in databases using different measures of 

interestingness. 

Based on the concept of strong rules, Rakesh Agrawal et al. introduced association rules. 
 

Problem Definition: 

The problem of association rule mining is defined as: 

Let  be a set of binary attributes called items. 

Let  be a set of transactions called the database. 

Each transaction in  has a unique transaction ID and contains a subset of the items in . 

A rule is defined as an implication of the form   

where and . 

The sets of items (for short itemsets)  and  are called antecedent (left-hand-side or LHS) and 

consequent (right-hand-side or RHS) of the rule respectively. 

Example: 

To illustrate the concepts, we use a small example from the supermarket domain. The set of 

items is and a small database containing the items (1 codes 

presence and 0 absence of an item in a transaction) is shown in the table. 

An example rule for the supermarket could be  meaning that if 

butter and bread are bought, customers also buy milk. 

 

Example database with 4 items and 5 transactions 
 

Transaction 
ID 

milk bread butter beer 

1 1 1 0 0 



 

2 0 0 1 0 

3 0 0 0 1 

4 1 1 1 0 

5 0 1 0 0 

 
Important concepts of Association Rule Mining: 
 

The support of an itemset is defined as the proportion of transactions in the 

data set which contain the itemset. In the example database, the itemset 

 has a support of  since it occurs in 20% of all 

transactions (1 out of 5 transactions). 

    The confidence of a rule is defined 
 
 

. 
 

For    example, the    rule       has   a   confidence   of 

 in the database, which means that for 100% of the transactions 

containing butter and bread the rule is correct (100% of the times a customer buys butter 

and bread, milk is bought as well). Confidence can be interpreted as an estimate of the 

probability  , the probability of finding the RHS of the rule in transactions under 

the condition that these transactions also contain the LHS. 

 

 The lift of a rule is defined as 

 

 
 

or the ratio of the observed support to that expected if X and Y were independent. The 

rule has a lift of . 



 

    The conviction of a rule is defined as 
 
 
 

. 
 
 
 

The rule  has a conviction of , 
 

and can be interpreted as the ratio of the expected frequency that X occurs without Y 

(that is to say, the frequency that the rule makes an incorrect prediction) if X and Y were 

independent divided by the observed frequency of incorrect predictions. 

 
Market basket analysis: 

 
This process analyzes customer buying habits by finding associations between the different 

items that customers place in their shopping baskets. The discovery of such association scan 

help retailers develops marketing strategies by gaining insight into which items are frequently 

purchased together by customers. For instance, if customers are buying milk, how likely are 

they to also buy bread (and what kind of bread) on the same trip to the supermarket. Such 

information can lead to increased sales by helping retailers do selective marketing and plan their 

shelf space. 

 



 

 
Example: 

 
If customers who purchase computers also tend to buy antivirus software at the same time, then 

placing the hardware display close to the software display may help increase the sales of both 

items. In an alternative strategy, placing hardware and software at opposite ends of the store 

may entice customers who purchase such items to pick up other items along the way. For 

instance, after deciding on an expensive computer, a customer may observe security systems for 

sale while heading toward the software display to purchase antivirus software and may decide to 

purchase a home security system as well. Market basket analysis can also help retailers plan 

which items to put on sale at reduced prices. If customers tend to purchase computers and 

printers together, then having a sale on printers may encourage the sale of printers as well as 

computers. 

Frequent Pattern Mining: 
 

Frequent pattern mining can be classified in various ways, based on the following criteria: 
 
 

1. Based on the completeness of patterns to be mined: 
 

   We can mine the complete set of frequent itemsets, the closed frequent itemsets, and the 



 

maximal frequent itemsets, given a minimum support threshold. 

   We can also mine constrained frequent itemsets, approximate frequent itemsets,near- 

match frequent itemsets, top-k frequent itemsets and so on. 

 

2. Based on the levels of abstraction involved in the rule set: 
 

Some methods for association rule mining can find rules at differing levels of abstraction. 
For example, suppose that a set of association rules mined includes the following rules 
where X is a variable representing a customer: 

buys(X, ―computer‖))=>buys(X, ―HP printer‖) (1) 
 

buys(X, ―laptop computer‖)) =>buys(X, ―HP printer‖) (2) 
 

In rule (1) and (2), the items bought are referenced at different levels of abstraction (e.g., 

―computer‖ is a higher-level abstraction of ―laptop computer‖). 

3. Based on the number of data dimensions involved in the rule: 
 

   If the items or attributes in an association rule reference only one dimension, then it is 

a single-dimensional association rule. 

buys (X, ―computer‖))=>buys(X, ―antivirus software‖) 
 

   If a rule references two or more dimensions, such as the dimensions age, income, and 

buys, then it is a multidimensional association rule. The following rule is an example of a 

multidimensional rule: 

age(X, ―30,31…39‖) ^ income(X, ―42K,…48K‖))=>buys(X, ―high resolution TV‖) 
 

4. Based on the types of values handled in the rule: 

   If a rule involves associations between the presence or absence of items, it is a Boolean 

association rule. 

   If a rule describes associations between quantitative items or attributes, then it is a 

quantitative association rule. 

5. Based on the kinds of rules to be mined: 

   Frequent pattern analysis can generate various kinds of rules and other interesting 



 

relationships. 

   Association rule mining can generate a large number of rules, many of which are 

redundant or do not indicate a correlation relationship among items ets. 

   The discovered associations can be further analyzed to uncover statistical correlations, 

leading to correlation rules. 

6. Based on the kinds of patterns to be mined: 

   Many kinds of frequent patterns can be mined from different kinds of data sets. 

   Sequential pattern mining searches for frequent subsequences in a sequence data set, 

where a sequence records an ordering of events. 

   For example, with sequential pattern mining, we can study the order in which items are 

frequently purchased. For instance, customers may tend to first buy a PC, followed by a 

digital camera, and then a memory card. 

   Structure d pattern mining searches for frequent substructures in a structured data 

set.   Single items are the simplest form of structure. 

   Each element of an itemset may contain a subsequence, a subtree, and so on. 

   Therefore, structure d pattern mining can be considered as the most general form of 

frequent pattern mining. 

 

Efficient Frequent Itemset Mining Methods: 

Finding Frequent Itemsets Using Candidate Generation: The Apriori Algorithm 

 Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining 

frequent itemsets for Boolean association rules. 

 The name of the algorithm is based on the fact that the algorithm uses prior knowledge of 

frequent itemset properties. 

   Apriori employs an iterative approach known as a level-wise search, where k-itemsets are 

used to explore (k+1)-itemsets. 

   First, the set of frequent 1-itemsets is found by scanning the database to accumulate the 

count for each item, and collecting those items that satisfy minimum support. The 

resulting set is denoted L1. Next, L1 is used to find L2, the set of frequent 2-itemsets, 



 

which is used to find L3, and so on, until no more frequent k- itemsets can be found. 

   The finding of each Lk requires one full scan of the database. 

A two-step process is followed in Apriori consisting of join and prune action. 
 

Example: 
 
 

TID List of item IDs 

T10
0 

I1, I2, I5 

T20
0 

I2, I4 

T30
0 

I2, I3 



 

T40
0 

I1, I2, I4 

T50
0 

I1, I3 

T60
0 

I2, I3 

T70
0 

I1, I3 

T80
0 

I1, I2, I3, I5 

T90
0 

I1, I2, I3 

 

There are nine transactions in this database, that is, |D| = 9. 
 

Steps: 

1. In the first iteration of the algorithm, each item is a member of the set of candidate1- 

itemsets, C1. The algorithm simply scans all of the transactions in order to count the number 

of occurrences of each item. 

2. Suppose that the minimum support count required is 2, that is, min sup = 2. The set of 

frequent 1-itemsets, L1, can then be determined. It consists of the candidate 1-itemsets 

satisfying minimum support. In our example, all of the candidates in C1 satisfy minimum 

support. 

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 on L1 to 

generate a candidate set of 2-itemsets, C2.No candidates are removed fromC2 during the prune 

step because each subset of the candidates is also frequent. 

4. Next, the transactions in Dare scanned and the support count of each candidate itemsetInC2 

is accumulated. 

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate2- 

itemsets in C2 having minimum support. 

6. The generation of the set of candidate 3-itemsets,C3, From the join step, we first getC3 

=L2x L2 = ({I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4},{I2, I3, I5}, {I2, I4, I5}. Based 

on the Apriori property that all subsets of a frequent itemset must also be frequent, we can 

determine that the four latter candidates cannot possibly be frequent. 

7. The transactions in D are scanned in order to determine L3, consisting of those candidate 



 

3-itemsets in C3 having minimum support. 

8. The algorithm uses L3x L3 to generate a candidate set of 4-itemsets, C4. 
 
 
 

 
 



 

 
 

Generating Association Rules from Frequent Itemsets: 

Once the frequent itemsets from transactions in a database D have been found, it is 

straightforward to generate strong association rules from them. 

 

 
 

 
 

Example: 
 



 

 
 
 
Mining Multilevel Association Rules: 
 

   For many applications, it is difficult to find strong associations among data items at 

low or primitive levels of abstraction due to the sparsity of data at those levels. 

   Strong associations discovered at high levels of abstraction may represent 

commonsense knowledge. 

   Therefore, data mining systems should provide capabilities for mining association 

rules at multiple levels of abstraction, with sufficient flexibility for easy traversal 

among different abstraction spaces. 

   Association rules generated from mining data at multiple levels of abstraction are called 

multiple-level or multilevel association rules. 

   Multilevel association rules can be mined efficiently using concept hierarchies under a 

support-confidence framework. 

   In general, a top-down strategy is employed, where counts are accumulated for the 

calculation of frequent itemsets at each concept level, starting at the concept level 1 and 

working downward in the hierarchy toward the more specific concept levels, until no 

more frequent itemsets can be found. 

 

A concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher 

level, more general concepts. Data can be generalized by replacing low-level concepts within 



 

the data by their higher-level concepts, or ancestors, from a concept hierarchy. 

 

 

The concept hierarchy has five levels, respectively referred to as levels 0to 4, starting with 

level 0 at the root node for all. 

 

 Here, Level 1 includes computer, software, printer &camera, and computer accessory.  

Level 2 includes laptop computer, desktop computer, office software, antivirus software   

Level 3 includes IBM desktop computer, . . . , Microsoft office software, and so on. 

Level 4 is the most specific abstraction level of this hierarchy. 
 

Approaches For Mining Multilevel Association Rules: 

1. Uniform Minimum Support: 

The same minimum support threshold is used when mining at each level of abstraction. 



 

When a uniform minimum support threshold is used, the search procedure is simplified. 

The method is also simple in that users are required to specify only one minimum support 

threshold. 

The uniform support approach, however, has some difficulties. It is unlikely that items at 

lower levels of abstraction will occur as frequently as those at higher levels of abstraction. 

If the minimum support threshold is set too high, it could miss some meaningful 

associations occurring at low abstraction levels. If the threshold is set too low, it may 

generate many uninteresting associations occurring at high abstraction levels. 

 

 

2. Reduced Minimum Support: 

Each level of abstraction has its own minimum support threshold. 
 

The deeper the level of abstraction, the smaller the corresponding threshold is. 

For example, the minimum support thresholds for levels 1 and 2 are 5% and 

3%,respectively. In this way, “computer”, “laptop computer”, and ―desktop computer‖ are all 

considered frequent. 

 

 



 

3. Group-Based Minimum Support: 

Because users or experts often have insight as to which groups are more important than 

others, it is sometimes more desirable to set up user-specific, item, or group based minimal 

support thresholds when mining multilevel rules. 

For example, a user could set up the minimum support thresholds based on product price, or 

on items of interest, such as by setting particularly low support thresholds for laptop 

computers and flash drives in order to pay particular attention to the association patterns 

containing items in these categories. 

 

Mining Multidimensional Association Rules from Relational Databases and Data 

Warehouses: 

   Single dimensional or intradimensional association rule contains a single distinct 

predicate (e.g., buys) with multiple occurrences i.e., the predicate occurs more than once 

within the rule. 

buys(X, “digital camera”)=>buys(X, “HP printer”) 
 

   Association rules that involve two or more dimensions or predicates can be referred 

to as multidimensional association rules. 

age(X, “20…29”)^occupation(X, “student”)=>buys(X, “laptop”) 

   Above Rule contains three predicates (age, occupation, and buys), each of which occurs 

only once in the rule. Hence, we say that it has no repeated predicates. 

   Multidimensional association rules with no repeated predicates are called 

interdimensional association rules. 

   We can also mine multidimensional association rules with repeated predicates, which 

contain multiple occurrences of some predicates. These rules are called hybrid- 

dimensional association rules. An example of such a rule is the following, where the 

predicate buys is repeated: 

age (X, “20…29”)^buys(X, “laptop”)=>buys(X, “HP printer”) 
 



 

 

Mining Quantitative Association Rules: 

Quantitative association rules are multidimensional association rules in which the numeric 

attributes are dynamically discretized during the mining process so as to satisfy some mining 

criteria, such as maximizing the confidence or compactness of the rules mined. 

In this section, we focus specifically on how to mine quantitative association rules having 

two quantitative attributes on the left-hand side of the rule and one categorical attribute on 

the right-hand side of the rule. That is Aquan1 ^Aquan2 =>A cat whereAquan1 and Aquan2 

are tests on quantitative attribute interval Acattests a categorical attribute from the task-

relevant data. 

Such rules have been referred to as two-dimensional quantitative association rules, 

because they contain two quantitative dimensions. 

For instance, suppose you are curious about the association relationship between pairs of 

quantitative attributes, like customer age and income, and the type of television (such as 

high-definition TV, i.e., HDTV) that customers like to buy. 

An example of such a 2-D quantitative association rule is 

age(X, ―30…39‖)^income(X, ―42K…48K‖)=>buys(X, ―HDTV‖) 
 

From Association Mining to Correlation Analysis: 

 A correlation measure can be used to augment the support-confidence framework for 

association rules. This leads to correlation rules of the form 

A=>B [support, confidence, correlation] 

  That is, a correlation rule is measured not only by its support and confidence but also by 

the correlation between itemsets A and B. There are many different correlation measures 

from which to choose. In this section, we study various correlation measures to determine 

which would be good for mining large data sets. 

   Lift is a simple correlation measure that is given as follows. The occurrence of itemset A is 

independent of the occurrence of itemset B if        = P(A)P(B); otherwise, itemsets A 



 

and B are dependent and correlated as events. This definition can easily be extended to more 

than two itemsets. 

The lift between the occurrence of A and B can be measured by computing 

 

If the lift(A,B) is less than 1, then the occurrence of A is negatively correlated with 

the occurrence of B. 

If the resulting value is greater than 1, then A and B are positively correlated, meaning 

that the occurrence of one implies the occurrence of the other. 

If the resulting value is equal to 1, then A and B are independent and there is no 

correlation between them. 

 
Classification and Prediction: 
 

Classification and prediction are two forms of data analysis that can be used to extract 

models describing important data classes or to predict future data trends. 

Classification predicts categorical (discrete, unordered) labels, prediction models continuous 

valued functions. 

For example, we can build a classification model to categorize bank loan applications as 

either safe or risky, or a prediction model to predict the expenditures of potential customers 

on computer equipment given their income and occupation. 

A predictor is constructed that predicts a continuous-valued function, or ordered value, as 

opposed to a categorical label. 

Regression analysis is a statistical methodology that is most often used for numeric 

prediction. 

Many classification and prediction methods have been proposed by researchers in machine 

learning, pattern recognition, and statistics. 

Most algorithms are memory resident, typically assuming a small data size. Recent data 



 

mining research has built on such work, developing scalable classification and prediction 

techniques capable of handling large disk-resident data. 

 
Issues Regarding Classification and Prediction: 

1. Preparing the Data for Classification and Prediction: 

The following preprocessing steps may be applied to the data to help improve the accuracy, 

efficiency, and scalability of the classification or prediction process. 

(i) Data cleaning: 

This refers to the preprocessing of data in order to remove or reduce noise (by applying 

smoothing techniques) and the treatment of missing values (e.g., by replacing a missing 

value with the most commonly occurring value for that attribute, or with the most probable 

value based on statistics). 

Although most classification algorithms have some mechanisms for handling noisy or 

missing data, this step can help reduce confusion during learning. 

(ii) Relevance analysis: 

Many of the attributes in the data may be redundant. 

Correlation analysis can be used to identify whether any two given attributes are 

statistically related. 

For example, a strong correlation between attributes A1 and A2 would suggest that one of 

the two could be removed from further analysis. 

A database may also contain irrelevant attributes. Attribute subset selection can be used 

in these cases to find a reduced set of attributes such that the resulting probability 

distribution of the data classes is as close as possible to the original distribution obtained 

using all attributes. 

Hence, relevance analysis, in the form of correlation analysis and attribute subset 

selection, can be used to detect attributes that do not contribute to the classification or 

prediction task. 

Such analysis can help improve classification efficiency and scalability. 
 



 

(iii) Data Transformation and Reduction 

The data may be transformed by normalization, particularly when neural networks or 

methods involving distance measurements are used in the learning step. 

Normalization involves scaling all values for a given attribute so that they fall within a 

small specified range, such as -1 to +1 or 0 to 1. 

The data can also be transformed by generalizing it to higher-level concepts. Concept 

hierarchies may be used for this purpose. This is particularly useful for continuous 

valued attributes. 

    For example, numeric values for the attribute income can be generalized to discrete 
ranges, such   
                   as low, medium, and high. Similarly, categorical attributes, like street, can be 
generalized to  
                   higher-level concepts, like city. 

Data can also be reduced by applying many other methods, ranging from wavelet 

Transformation and principal components analysis to discretization techniques, such as 

binning, histogram analysis, and clustering. 

 
Comparing Classification and Prediction Methods: 

 Accuracy: 

   The accuracy of a classifier refers to the ability of a given classifier to correctly predict 

the class label of new or previously unseen data (i.e., tuples without class label 

information). 

   The accuracy of a predictor refers to how well a given predictor can guess the value of 

the predicted attribute for new or previously unseen data. 

 Speed: 

This refers to the computational costs involved in generating and using the 

given classifier or predictor. 

 Robustness: 

This is the ability of the classifier or predictor to make correct predictions 

given noisy data or data with missing values. 

 Scalability: 



 

This refers to the ability to construct the classifier or predictor efficiently 

given large amounts of data. 

 Interpretability: 

   This refers to the level of understanding and insight that is provided by the classifier or 

predictor. 

Interpretability is subjective and therefore more difficult to assess. 
 
 
Classification by Decision Tree Induction: 

 Decision tree induction is the learning of decision trees from class-labeled training tuples.  
   A decision tree is a flowchart-like tree structure, where 

 
 Each internal node denotes a test on an attribute. 

 Each branch represents an outcome of the test. 

 Each leaf node holds a class label. 

 The topmost node in a tree is the root node. 
 

 
 

   The construction of decision tree classifiers does not require any domain knowledge or 

parameter setting, and therefore I appropriate for exploratory knowledge discovery. 

   Decision trees can handle high dimensional data. 

   Their representation of acquired knowledge in tree form is intuitive and generally easy to 

assimilate by humans. 

   The learning and classification steps of decision tree induction are simple and 

fast.   In general, decision tree classifiers have good accuracy. 



 

   Decision tree induction algorithms have been used for classification in many application 

areas, such as medicine, manufacturing and production, financial analysis, astronomy, 

and molecular biology. 

Algorithm For Decision Tree Induction: 
 

 
The algorithm is called with three parameters: 

 Data partition 

 Attribute list 

 Attribute selection method 
 

   The parameter attribute list is a list of attributes describing the tuples. 

   Attribute selection method specifies a heuristic procedure for selecting the attribute that 



 

―best‖ discriminates the given tuples according to class. 

The tree starts as a single node, N, representing the training tuples in D. 
 

   If the tuples in D are all of the same class, then node N becomes a leaf and is labeled 

with that class . 

   All of the terminating conditions are explained at the end of the algorithm. 

   Otherwise, the algorithm calls Attribute selection method to determine the splitting 

criterion. 

   The splitting criterion tells us which attribute to test at node N by determining the ―best‖ 

way to separate or partition the tuples in D into individual classes. 

 

There are three possible scenarios. Let A be the splitting attribute. A has v distinct values, 
{a1, a2, … ,av}, based on the training data. 

 
 

1 A is discrete-valued: 
 

In this case, the outcomes of the test at node N correspond directly to the known 

values of A. 

A branch is created for each known value, aj, of A and labeled with that value. 

A need not be considered in any future partitioning of the tuples. 

 

2 A is continuous-valued: 
 

In this case, the test at node N has two possible outcomes, corresponding to the conditions 

A <=split point and A >split point, respectively Where split point is the split-point 

returned by Attribute selection method as part of the splitting criterion. 

 
3 A is discrete-valued and a binary tree must be produced: 

The test at node N is of the form”A€SA?”. 

SA is the splitting subset for A, returned by Attribute selection method as part of the splitting 

criterion. It is a subset of the known values of A. 



 

 
 

 
 

 

(a) If A is Discrete valued (b)If A is continuous valued (c) If A is discrete-valued and a 

binary tree must be produced: 

Bayesian Classification: 
 

   Bayesian classifiers are statistical classifiers. 

   They can predict class membership probabilities, such as the probability that a given 

tuple belongs toa particular class. 

  Bayesian classification is based on Bayes’ theorem. 

Bayes’ Theorem: 

Let X be a data tuple. In Bayesian terms, X is considered “evidence”. and it is described by 

measurements made on a set of n attributes. 



 

Let H be some hypothesis, such as that the data tuple X belongs to a specified class C. 

For classification problems, we want to determine P(H|X), the probability that the hypothesis 

H holds given the ―evidence‖ or observed data tuple X. 

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned on X. 

Bayes’ theorem is useful in that it provides a way of calculating the posterior probability, 

P(H|X), from P(H), P(X|H), and P(X). 

 
 
Naïve Bayesian Classification: 
 

The naïve Bayesian classifier, or simple Bayesian classifier, works as follows: 
 

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple is 

represented by an n-dimensional attribute vector, X = (x1, x2, …,xn), depicting n measurements 

made on the tuple from n attributes, respectively, A1, A2, …, An. 

2. Suppose that there are m classes, C1, C2, …, Cm. Given a tuple, X, the classifier will 

predict that X belongs to the class having the highest posterior probability, conditioned on X. 

That is, the naïve Bayesian classifier predicts that tuple X belongs to the class Ci if and only if 

 
 

Thus we maximize P(CijX). The class Cifor which P(CijX) is maximized is called the 

maximum posteriori hypothesis. By Bayes’ theorem 

3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) need be maximized. If the class prior 

probabilities are not known, then it is commonly assumed that the classes are equally likely, that 

is, P(C1) = P(C2) = …= P(Cm), and we would therefore maximize P(X|Ci). 

Otherwise, we maximize P(X|Ci)P(Ci). 



 

4. Given data sets with many attributes, it would be extremely computationally 

expensive to compute P(X|Ci). In order to reduce computation in evaluating P(X|Ci), the 

naive assumption of class conditional independence is made. This presumes that the values 

of the attributes are conditionally independent of one another, given the class label of the 

tuple. Thus, 

 
 

We can easily estimate the probabilities P(x1|Ci), P(x2|Ci), : : : , P(xn|Ci) from the training 

tuples. For each attribute, we look at whether the attribute is categorical or continuous-

valued. For instance, to compute P(X|Ci), we consider the following: 

 If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ciin D having the value 

xkfor Ak, divided by |Ci,D| the number of tuples of class Ciin D. 

 If Akis continuous-valued, then we need to do a bit more work, but the calculation is 

pretty straightforward. 

A continuous-valued attribute is typically assumed tohave a Gaussian distribution with a 

mean μ and standard deviation , defined by 

 
 

5. In order to predict the class label of X, P(XjCi)P(Ci) is evaluated for each 

class Ci. The classifier predicts that the class label of tuple X is the class Ciif and 

only if 

 

A Multilayer Feed-Forward Neural Network: 

The backpropagation algorithm performs learning on a multilayer feed- forward neural 

network. 

It iteratively learns a set of weights for prediction of the class label of tuples. 



 

A multilayer feed-forward neural network consists of an input layer, one or more hidden 

layers, and an output layer. 

Example: 

 
 
 

The inputs to the network correspond to the attributes measured for each training tuple. 

The inputs are fed simultaneously into the units making up the input layer. These inputs 

pass through the input layer and are then weighted and fed simultaneously to a second 

layer known as a hidden layer. 

The outputs of the hidden layer units can be input to another hidden layer, and so on. The 

number of hidden layers is arbitrary. 

The weighted outputs of the last hidden layer are input to units making up the output layer, 

which emits the network’s prediction for given tuples 

 

Classification by Backpropagation: 

Backpropagation is a neural network learning algorithm. 

A neural network is a set of connected input/output units in which each connection has a 

weight associated with it. 

During the learning phase, the network learns by adjusting the weights so as to be able to 

predict the correct class label of the input tuples. 



 

Neural network learning is also referred to as connectionist learning due to the connections between 

units. 

Neural networks involve long training times and are therefore more suitable for 

applications where this is feasible. 

   Backpropagation learns by iteratively processing a data set of training tuples, comparing 

the network’s prediction for each tuple with the actual known target value. 

   The target value may be the known class label of the training tuple (for classification 

problems) or a continuous value (for prediction). 

   For each training tuple, the weights are modified so as to minimize the mean squared 

error between the network’s prediction and the actual target value. These modifications 

are made in the ―backwards‖ direction, that is, from the output layer, through each hidden 

layer down to the first hidden layer hence the name is backpropagation. 

   Although it is not guaranteed, in general the weights will eventually converge, and the 

learning process stops. 

Advantages: 

   It includes their high tolerance of noisy data as well as their ability to classify patterns on 

which they have not been trained. 

   They can be used when you may have little knowledge of the relationships between 

attributes and classes. 

   They are well-suited for continuous-valued inputs and outputs, unlike most decision tree 

algorithms. 

   They have been successful on a wide array of real-world data, including handwritten 

character recognition, pathology and laboratory medicine, and training a computer to 

pronounce English text. 

   Neural network algorithms are inherently parallel; parallelization techniques can be used 

to speed up the computation process. 

 
Process: 

Initialize the weights: 
 



 

The weights in the network are initialized to small random numbers ranging from-1.0 to 1.0, or -
0.5 to 0.5. Each unit has a bias associated with it. The biases are similarly initialized to small 
random numbers. 

Each training tuple, X, is processed by the following steps. 
 

Propagate the inputs forward: 
 
 

First, the training tuple is fed to the input layer of the network. The inputs pass through the input 

units, unchanged. That is, for an input unit j, its output, Oj, is equal to its input value, Ij. Next, 

the net input and output of each unit in the hidden and output layers are computed. The net input 

to a unit in the hidden or output layers is computed as a linear combination of its inputs. 

Each such unit has a number of inputs to it that are, in fact, the outputs of the units connected to 

it in the previous layer. Each connection has a weight. To compute the net input to the unit, each 

input connected to the unit is multiplied by its corresponding weight, and this is summed. 

 

 

Where wi,j is the weight of the connection from unit iin the previous layer to unit 

j; Oiis the output of unit ifrom the previous layer 

Ɵjis the bias of the unit & it acts as a threshold in that it serves to vary the activity of the unit. 
 

Each unit in the hidden and output layers takes its net input and then applies an activation 

function to it. 

 
 
 
 
 



 

Backpropagate the error: 
 

The error is propagated backward by updating the weights and biases to reflect the error of 

the network’s prediction. For a unit j in the output layer, the error Err jis computed by 

 

Where Oj is the actual output of unit j, and Tjis the known target value of the given training 

tuple. 

The error of a hidden layer unit j is 

 

Where wjk is the weight of the connection from unit j to a unit k in the next higher 

layer, andErrkis the error of unit k. 

Weights are updated by the following equations, where Dwi j is the change in weight wi j: 

 

Biases are updated by the following equations below 

 
 

Algorithm: 
 



 

 

k-Nearest-Neighbor Classifier: 

Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a 

given test tuple with training tuples that are similar to it. 

The training tuples are described by n attributes. Each tuple represents a point in an n- 

dimensional space. In this way, all of the training tuples are stored in an n-dimensional 

pattern space. When given an unknown tuple, a k-nearest-neighbor classifier searches the 

pattern space for the k training tuples that are closest to the unknown tuple. These k 

training tuples are the k nearest neighbors of the unknown tuple. 

Closeness is defined in terms of a distance metric, such as Euclidean distance. 

The Euclidean distance between two points or tuples, say, X1 = (x11, x12, … , x1n) and 

X2 = (x21, x22, … ,x2n), is 

 



 

In other words, for each numeric attribute, we take the difference between the corresponding 

values of that attribute in tuple X1and in tuple X2, square this difference, and accumulate it. 

The square root is taken of the total accumulated distance count. 

Min-Max normalization can be used to transform a value v of a numeric attribute A to v0 in 

the range [0, 1] by computing 

 
Where minA and maxA are the minimum and maximum values of attribute A 

 

For k-nearest-neighbor classification, the unknown tuple is assigned the most common 

class among its k nearest neighbors. 

When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to 

it in pattern space. 

Nearest neighbor classifiers can also be used for prediction, that is, to return a real-

valued prediction for a given unknown tuple. 

In this case, the classifier returns the average value of the real-valued labels associated 

with the k nearest neighbors of the unknown tuple. 

Other Classification Methods: 
 
Genetic Algorithms: 
 

Genetic algorithms attempt to incorporate ideas of natural evolution. In general, genetic learning 

starts as follows. 

   An initial population is created consisting of randomly generated rules. Each rule can be 

represented by a string of bits. As a simple example, suppose that samples in a given 

training set are described by two Boolean attributes, A1 and A2, and that there are two 

classes, C1 andC2. 

   The rule ―IF A1 ANDNOT A2 THENC2‖ can be encoded as the bit string ―100,‖ where 

the two leftmost bits represent attributes A1 and A2, respectively, and the rightmost bit 

represents the class. 



 

   Similarly, the rule ―IF NOT A1 AND NOT A2 THEN C1‖ can be encoded as ―001.‖ 

   If an attribute has k values, where k > 2, then k bits may be used to encode the attribute’s 

values. 

Classes can be encoded in a similar fashion. 

   Based on the notion of survival of the fittest, a new population is formed to consist 

of the fittest rules in the current population, as well as offspring of these rules. 

   Typically, the fitness of a rule is assessed by its classification accuracy on a set of training 

samples. 

   Offspring are created by applying genetic operators such as crossover and mutation. 

  In crossover, substrings from pairs of rules are swapped to form new pairs of rules. 

  In mutation, randomly selected bits in a rule’s string are inverted. 

   The process of generating new populations based on prior populations of rules continues 

until a population, P, evolves where each rule in P satisfies a pre specified fitness 

threshold. 

   Genetic algorithms are easily parallelizable and have been used for classification as 

well as other optimization problems. In data mining, they may be used to evaluate the 

fitness of other algorithms. 

 
Fuzzy Set Approaches: 

   Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership 

that a certain value has in a given category. Each category then represents a fuzzy set. 

   Fuzzy logic systems typically provide graphical tools to assist users in converting attribute 

values to fuzzy truth values. 

Fuzzy set theory is also known as possibility theory. 
   It was proposed by LotfiZadeh in1965 as an alternative to traditional two-value logic and 

probability theory. 

   It lets us work at a high level of abstraction and offers a means for dealing with imprecise 

measurement of data. 

   Most important, fuzzy set theory allows us to deal with vague or inexact facts. 

   Unlike the notion of traditional ―crisp‖ sets where an element either belongs to a set S or its 



 

complement, in fuzzy set theory, elements can belong to more than one fuzzy set. 

   Fuzzy set theory is useful for data mining systems performing rule-based classification. 

  It provides operations for combining fuzzy measurements. 

   Several procedures exist for translating the resulting fuzzy output into a defuzzified or crisp 

value that is returned by the system. 

   Fuzzy logic systems have been used in numerous areas for classification, including 

market research, finance, health care, and environmental engineering. 

 
Example: 

 

 
 

Regression Analysis: 

   Regression analysis can be used to model the relationship between one or more independent 

or predictor variables and a dependent or response variable which is continuous-valued. 

   In the context of data mining, the predictor variables are the attributes of interest describing 

the tuple (i.e., making up the attribute vector). 

In general, the values of the predictor variables are known. 

The response variable is what we want to predict. 
 
 

Linear Regression: 

   Straight-line regression analysis involves a response variable, y, and a single 

predictor variable x. 



 

   It is the simplest form of regression, and models y as a linear function of x. 

That is, y = b+wx 

where the variance of y is assumed to be constant 

band w are regression coefficients specifying the Y-intercept and slope of the line. 

The regression coefficients, w and b, can also be thought of as weights, so that we can 

equivalently write, y = w0+w1x 

These coefficients can be solved for by the method of least squares, which estimates the 

best-fitting straight line as the one that minimizes the error between the actual data and 

the estimate of the line. 

Let D be a training set consisting of values of predictor variable, x, for some population 

and their associated values for response variable, y. The training set contains |D| data points 

of the form(x1, y1), (x2, y2), … , (x|D|, y|D|). 

The regression coefficients can be estimated using this method with the following equations: 

 
 
 

 

where x is the mean value of x1, x2, … , x|D|, and y is the mean value of y1, y2,…, y|D|. 

The coefficients w0 and w1 often provide good approximations to otherwise complicated 

regression equations. 

Multiple Linear Regression: 

   It is an extension of straight-line regression so as to involve more than one predictor 

variable. 

   It allows response variable y to be modeled as a linear function of, say, n predictor 

variables or attributes, A1, A2, …, An, describing a tuple, X. 

   An example of a multiple linear regression model based on two predictor attributes or 



 

variables, A1 and A2, isy = w0+w1x1+w2x2 

where x1 and x2 are the values of attributes A1 and A2, respectively, in X. 

   Multiple regression problems are instead commonly solved with the use of statistical 

software packages, such as SAS, SPSS, and S-Plus. 

 
Nonlinear Regression: 

   It can be modeled by adding polynomial terms to the basic linear model. 

   By applying transformations to the variables, we can convert the nonlinear model into a 

linear one that can then be solved by the method of least squares. 

   Polynomial Regression is a special case of multiple regression. That is, the addition of 

high-order terms like x2, x3, and so on, which are simple functions of the single variable, x, 

can be considered equivalent to adding new independent variables. 

Transformation of a polynomial regression model to a linear regression model: 

Consider a cubic polynomial relationship given by 

y = w0+w1x+w2x2+w3x3 

To convert this equation to linear form, we define new variables: 

x1 = x, x2 = x2 ,x3 = x3 

It can then be converted to linear form by applying the above assignments, resulting in the 

equation y = w0+w1x+w2x2+w3x3 

which is easily solved by the method of least squares using software for regression analysis. 
 
 

Classifier Accuracy: 

 The accuracy of a classifier on a given test set is the percentage of test set tuples that are 

correctly classified by the classifier. 

 In the pattern recognition literature, this is also referred to as the overall recognition rate of 

the classifier, that is, it reflects how well the classifier recognizes tuples of the various 

classes. 

 The error rate or misclassification rate of a classifier, M, which is simply 1-

Acc(M), where Acc(M) is the accuracy of M. 



 

 The confusion matrix is a useful tool for analyzing how well your classifier can 

recognize tuples of different classes. 

 True positives refer to the positive tuples that were correctly labeled by the classifier. 

 True negatives are the negative tuples that were correctly labeled by the classifier. 

 False positives are the negative tuples that were incorrectly labeled. 

 How well the classifier can recognize, for this sensitivity and specificity measures can be 

used. 

Accuracy is a function of sensitivity and specificity. 
 

 

Where t _posis the number of true positives 

posis the number of positive tuples 

t _negis the number of true negatives 

negis the number of negative tuples, f 

_posis the number of false positives 

 

 
 
  



 

Chapter-4 
Cluster Analysis: 

   The process of grouping a set of physical or abstract objects into classes of similar 

objects is called clustering. 

   A cluster is a collection of data objects that are similar to one another within the same 

cluster and are dissimilar to the objects in other clusters. 

   A cluster of data objects can be treated collectively as one group and so may be considered 

as a form of data compression. 

   Cluster analysis tools based on k-means, k-medoids, and several methods have also been 

built into many statistical analysis software packages or systems, such as S-Plus, SPSS, 

and SAS. 

 
Applications: 

   Cluster analysis has been widely used in numerous applications, including market 

research, pattern recognition, data analysis, and image processing. 

   In business, clustering can help marketers discover distinct groups in their customer bases 

and characterize customer groups based on purchasing patterns. 

   In biology, it can be used to derive plant and animal taxonomies, categorize genes with 

similar functionality, and gain insight into structures inherent in populations. 

   Clustering may also help in the identification of areas of similar land use in an earth 

observation database and in the identification of groups of houses in a city according to 

house type, value, and geographic location, as well as the identification of groups of 

automobile insurance policy holders with a high average claim cost. 

   Clustering is also called data segmentation in some applications because clustering 

partitions large data sets into groups according to their similarity. 

   Clustering can also be used for outlier detection, Applications of outlier detection include 

the detection of credit card fraud and the monitoring of criminal activities in electronic 

commerce. 

 

 



 

Typical Requirements of Clustering in Data Mining: 

 

 Scalability: 

Many clustering algorithms work well on small data sets containing fewer than several 

hundred data objects; however, a large database may contain millions of objects. 

Clustering on a sample of a given large data set may lead to biased results. 

Highly scalable clustering algorithms are needed. 

 Ability to deal with different types of attributes: 

Many algorithms are designed to cluster interval-based (numerical) data. However, 

applications may require clustering other types of data, such as binary, categorical 

(nominal), and ordinal data, or mixtures of these data types. 

 Discovery of clusters with arbitrary shape: 

Many clustering algorithms determine clusters based on Euclidean or Manhattan distance 

measures. Algorithms based on such distance measures tend to find spherical clusters with 

similar size and density. 

However, a cluster could be of any shape. It is important to develop algorithms that can 

detect clusters of arbitrary shape. 

 Minimal requirements for domain knowledge to determine input parameters: 

Many clustering algorithms require users to input certain parameters in cluster analysis 

(such as the number of desired clusters). The clustering results can be quite sensitive to 

input parameters. Parameters are often difficult to determine, especially for data sets 

containing high-dimensional objects. This not only burdens users, but it also makes the 

quality of clustering difficult to control. 

 Ability to deal with noisy data: 

Most real-world databases contain outliers or missing, unknown, or erroneous data. 

Some clustering algorithms are sensitive to such data and may lead to clusters of poor 

quality. 

 Incremental clustering and insensitivity to the order of input records: 

Some clustering algorithms cannot incorporate newly inserted data (i.e., database updates) 



 

into existing clustering structures and, instead, must determine a new clustering from scratch. 

Some clustering algorithms are sensitive to the order of input data. 

That is, given a set of data objects, such an algorithm may return dramatically different clusterings 

depending on the order of presentation of the input objects. 

It is important to develop incremental clustering algorithms and algorithms that are insensitive to 

the order of input. 

 High dimensionality: 

A database or a data warehouse can contain several dimensions or attributes. Many clustering 

algorithms are good at handling low-dimensional data, involving only two to three dimensions. 

Human eyes are good at judging the quality of clustering for up to three dimensions. Finding 

clusters of data objects in high dimensional space is challenging, especially considering that such 

data can be sparse and highly skewed. 

 Constraint-based clustering: 

Real-world applications may need to perform clustering under various kinds of constraints. 

Suppose that your job is to choose the locations for a given number of new automatic banking 

machines (ATMs) in a city. To decide upon this, you may cluster households  while considering 

constraints such as the city’s rivers and highway networks, and the type and number of customers 

per cluster. A challenging task is to find groups of data with good clustering behavior that satisfy 

specified constraints. 

 Interpretability and usability: 

Users expect clustering results to be interpretable, comprehensible, and usable. That is, 

clustering may need to be tied to specific semantic interpretations and applications. It is 

important to study how an application goal may influence the selection of clustering 

features and methods. 

 
Major Clustering Methods: 

 Partitioning Methods 

 Hierarchical Methods 

 Density-Based Methods 



 

 Grid-Based Methods 

 Model-Based Methods 
 
 
Partitioning Methods: 

A partitioning method constructs k partitions of the data, where each partition represents a 

cluster and k <= n. That is, it classifies the data into k groups, which together satisfy the 

following requirements: 

 Each group must contain at least one object, 

and 

 Each object must belong to exactly one group. 

A partitioning method creates an initial partitioning. It then uses an iterative relocation 

technique that attempts to improve the partitioning by moving objects from one group to 

another. 

The general criterion of a good partitioning is that objects in the same cluster are close or 

related to each other, whereas objects of different clusters are far apart or very different. 

Hierarchical Methods: 

A hierarchical method creates a hierarchical decomposition of the given set of data objects. 

A hierarchical method can be classified as being either agglomerative or divisive, based on 

how the hierarchical decomposition is formed. 

 The agglomerative approach, also called the bottom-up approach, starts with each object 

forming a separate group. It successively merges the objects or groups that are close to 

one another, until all of the groups are merged into one or until a termination condition 

holds. 

 The divisive approach, also called the top-down approach, starts with all of the objects in 

the same cluster. In each successive iteration, a cluster is split up into smaller clusters, 

until eventually each object is in one cluster, or until a termination condition holds. 

Hierarchical methods suffer from the fact that once a step (merge or split) is done, it can 



 

never be undone. This rigidity is useful in that it leads to smaller computation costs by not 

having to worry about a combinatorial number of different choices. 

There are two approaches to improving the quality of hierarchical clustering: 
 

 Perform careful analysis of object ―linkages‖ at each hierarchical partitioning, such as in 

Chameleon, or 

 Integrate hierarchical agglomeration and other approaches by first using a hierarchical 

agglomerative algorithm to group objects into micro clusters, and then performing macro 

clustering on the micro clusters using another clustering method such as iterative 

relocation. 

 
Density-based methods: 

 Most partitioning methods cluster objects based on the distance between objects. Such 

methods can find only spherical-shaped clusters and encounter difficulty at discovering 

clusters of arbitrary shapes. 

 Other clustering methods have been developed based on the notion of density. Their 

general idea is to continue growing the given cluster as long as the density in the 

neighborhood exceeds some threshold; that is, for each data point within a given 

cluster, the neighborhood of a given radius has to contain at least a minimum number of 

points. Such a method can be used to filter out noise (outliers)and discover clusters of 

arbitrary shape. 

 DBSCAN and its extension, OPTICS, are typical density-based methods that grow 

clusters according to a density-based connectivity analysis. DENCLUE is a method that 

clusters objects based on the analysis of the value distributions of density functions. 

 
Grid-Based Methods: 

 Grid-based methods quantize the object space into a finite number of cells that form a 

grid structure. 

 All of the clustering operations are performed on the grid structure i.e., on the quantized 

space. The main advantage of this approach is its fast-processing time, which is 



 

typically independent of the number of data objects and dependent only on the number 

of cells in each dimension in the quantized space. 

 STING is a typical example of a grid-based method. Wave Cluster applies wavelet 

transformation for clustering analysis and is both grid-based and density-based. 

 
Model-Based Methods: 

 Model-based methods hypothesize a model for each of the clusters and find the best fit 

of the data to the given model. 

 A model-based algorithm may locate clusters by constructing a density function that 

reflects the spatial distribution of the data points. 

 It also leads to a way of automatically determining the number of clusters based on 

standard statistics, taking ―noise‖ or outliers into account and thus yielding robust 

clustering methods. 

 
Tasks in Data Mining: 

 Clustering High-Dimensional Data 

 Constraint-Based Clustering 

 

Clustering High-Dimensional Data: 

   It is a particularly important task in cluster analysis because many applications require the 

analysis of objects containing a large number of features or dimensions. 

   For example, text documents may contain thousands of terms or keywords as features, and 

DNA micro array data may provide information on the expression levels of thousands of 

genes under hundreds of conditions. 

   Clustering high-dimensional data is challenging due to the curse of dimensionality.      Many 

dimensions may not be relevant. As the number of dimensions increases, 

The data become increasingly sparse so that the distance measurement between pairs of points 

become meaningless and the average density of points anywhere in the data is likely to be low. 

Therefore, a different clustering methodology needs to be developed for high-dimensional data. 



 

  CLIQUE and PROCLUS are two influential subspace clustering methods, which search for 

clusters in subspaces of the data, rather than over the entire data space. 

   Frequent pattern–based clustering, another clustering methodology, extracts distinct frequent 

patterns among subsets of dimensions that occur frequently. It uses such patterns to group 

objects and generate meaningful clusters. 

 

Constraint-Based Clustering: 

   It is a clustering approach that performs clustering by incorporation of user-specified  

or application-oriented constraints. 

   A constraint expresses a user’s expectation or describes properties of the desired 

clustering results, and provides an effective means for communicating with the 

clustering process. 

   Various kinds of constraints can be specified, either by a user or as per application 

requirements. 

   Spatial clustering employs with the existence of obstacles and clustering under user- 

specified constraints. In addition, semi-supervised clustering employs for pairwise 

constraints in order to improve the quality of the resulting clustering. 

 
Classical Partitioning Methods: 

The most well-known and commonly used partitioning methods are 

 The k-Means Method 

 k-Medoids Method 
 

Centroid-Based Technique: The K-Means Method: 

The k-means algorithm takes the input parameter, k, and partitions a set of n objects into k clusters 

so that the resulting intra cluster similarity is high but the inter cluster similarity is low. 

Cluster similarity is measured in regard to the mean value of the objects in a cluster, which can be 

viewed as the cluster’s centroid or center of gravity. 

The k-means algorithm proceeds as follows. 
 



 

   First, it randomly selects k of the objects, each of which initially represents a cluster 

mean or center. 

   For each of the remaining objects, an object is assigned to the cluster to which it is the 

most similar, based on the distance between the object and the cluster mean. 

   It then computes the new mean for each cluster. 

This process iterates until the criterion function converges. 
 
 

Typically, the square-error criterion is used, defined as 

 

Where E is the sum of the square error for all objects in the data set p 

is the point in space representing a given object 

mi is the mean of cluster Ci 
 
The k-means partitioning algorithm: 

The k-means algorithm for partitioning, where each cluster’s center is represented by the mean 

value of the objects in the cluster. 



 

 

 

Clustering of a set of objects based on the k-means method 
 

The k-Medoids Method: 
 

   The k-means algorithm is sensitive to outliers because an object with an extremely large 

value may substantially distort the distribution of data. This effect is particularly 

exacerbated due to the use of the square-error function. 

   Instead of taking the mean value of the objects in a cluster as a reference point, we can 

pick actual objects to represent the clusters, using one representative object per cluster. 

Each remaining object is clustered with the representative object to which it is the most 

similar. 

   The partitioning method is then performed based on the principle of minimizing the sum 

of the dissimilarities between each object and its corresponding reference point. That is, an 

absolute-error criterion is used, defined as 

 
 

Where E is the sum of the absolute error for all objects in the data set 
 

pis the point in space representing a given object in cluster Cj 
 

ojis the representative object of Cj 
 

   The initial representative objects are chosen arbitrarily. The iterative process of replacing 

representative objects by non-representative objects continues as long as the quality of the 



 

resulting clustering is improved. 

   This quality is estimated using a cost function that measures the average dissimilarity 

between an object and the representative object of its cluster. 

   To determine whether a non-representative object, oj random, is a good replacement for a 

current representative object, oj, the following four cases are examined for each of the 

nonrepresentative objects. 

 

Case 1: 
 

P currently belongs to representative object, oj. If ojis replaced by orandomasa representative object 

and p is closest to one of the other representative objects, oi,i≠j, then p is reassigned to oi. 

Case 2: 
 

P currently belongs to representative object, oj. If ojis replaced by orandomasa representative object 

and p is closest to orandom, then p is reassigned to orandom. 

Case 3: 
 

pcurrently belongs to representative object, oi, i≠j. If ojis replaced by orandomas a representative 

object and p is still closest to oi, then the assignment does notchange. 

Case 4: 
 

P currently belongs to representative object, oi, i≠j. If ojis replaced byorandomas a representative 

object and p is closest to orandom, then p is reassigned 

toorandom.  
 



 

Four cases of the cost function for k-medoids clustering 
 
The k-Medoids Algorithm: 

 
The k-medoids algorithm for partitioning based on medoid or central objects. 

 

 

The k-medoids method is more robust than k-means in the presence of noise and outliers, because a 

medoid is less influenced by outliers or other extreme values than a mean. However, its processing 

is more costly than the k-means method. 

Hierarchical Clustering Methods: 
 

   A hierarchical clustering method works by grouping data objects into a tree of clusters. 

   The quality of a pure hierarchical clustering method suffers from its inability to perform 

adjustment once a merge or split decision has been executed. That is, if a particular merge or 

split decision later turns out to have been a poor choice, the method cannot backtrack and 

correct it. 

Hierarchical clustering methods can be further classified as either agglomerative or divisive, 

depending on whether the hierarchical decomposition is formed in a bottom-up or top-down 

fashion. 

Agglomerative hierarchical clustering: 



 

   This bottom-up strategy starts by placing each object in its own cluster and then merges 

these atomic clusters into larger and larger clusters, until all of the objects are in a single 

cluster or until certain termination conditions are satisfied. 

   Most hierarchical clustering methods belong to this category. They differ only in their 

definition of intercluster similarity. 

 
Divisive hierarchical clustering: 

   This top-down strategy does the reverse of agglomerative hierarchical clustering by starting 

with all objects in one cluster. 

   It subdivides the cluster into smaller and smaller pieces, until each object forms a cluster on 

its own or until it satisfies certain termination conditions, such as a desired number of 

clusters is obtained or the diameter of each cluster is within a certain threshold. 

Constraint-Based Cluster Analysis: 

Constraint-based clustering finds clusters that satisfy user-specified preferences or constraints. 

Depending on the nature of the constraints, constraint-based clustering may adopt rather different 

approaches. 

There are a few categories of constraints. 

 Constraints on individual objects: 

We can specify constraints on the objects to be clustered. In a real estate application, for 

example, one may like to spatially cluster only those luxury mansions worth over a million 

dollars. This constraint confines the set of objects to be clustered. It can easily be handled by 

preprocessing after which the problem reduces to an instance of unconstrained clustering. 

 Constraints on the selection of clustering parameters: 
 

A user may like to set a desired range for each clustering parameter. Clustering parameters 

are usually quite specific to the given clustering algorithm. Examples of parameters include k, 

the desired number of clusters in a k-means algorithm; or e the radius and the minimum 

number of points in the DBSCAN algorithm. Although such user-specified parameters may 

strongly influence the clustering results, they are usually confined to the algorithm itself. 



 

Thus, their fine tuning and processing are usually not considered a form of constraint-based 

clustering. 

 Constraints on distance or similarity functions: 
 
We can specify different distance or similarity functions for specific attributes of the objects to be 

clustered, or different distance measures for specific pairs of objects. When clustering sportsmen, 

for example, we may use different weighting schemes for height, body weight, age, and skill 

level. Although this will likely change the mining results, it may not alter the clustering process 

per se. However, in some cases, such changes may make the evaluation of the distance function 

nontrivial, especially when it is tightly intertwined with the clustering process. 

 User-specified constraints on the properties of individual clusters: 

A user may like to specify desired characteristics of the resulting clusters, which may strongly 

influence the clustering process. 

 Semi-supervised clustering based on partial supervision: 

The quality of unsupervised clustering can be significantly improved using some weak form of 

supervision. This may be in the form of pairwise constraints (i.e., pairs of objects labeled as 

belonging to the same or different cluster). Such a constrained clustering process is called semi-

supervised clustering. 

 
Outlier Analysis: 

   There exist data objects that do not comply with the general behavior or model of the data. 

Such data objects, which are grossly different from or inconsistent with the remaining set 

of data, are called outliers. 

   Many data mining algorithms try to minimize the influence of outliers or eliminate them 

all together. This, however, could result in the loss of important hidden information 

because one person’s noise could be another person’s signal. In other words, the outliers 

may be of particular interest, such as in the case of fraud detection, where outliers may 

indicate fraudulent activity. Thus, outlier detection and analysis is an interesting data 

mining task, referred to as outlier mining. 

   It can be used in fraud detection, for example, by detecting unusual usage of credit cards 



 

or telecommunication services. In addition, it is useful in customized marketing for 

identifying the spending behavior of customers with extremely low or extremely high 

incomes, or in medical analysis for finding unusual responses to various medical 

treatments. 

Outlier mining can be described as follows: Given a set of n data points or objects and k, the 

expected number of outliers, find the top k objects that are considerably dissimilar, 

exceptional, or inconsistent with respect to the remaining data. The outlier mining problem 

can be viewed as two subproblems: 

   Define what data can be considered as inconsistent in a given data set, and 

Find an efficient method to mine the outliers so defined. 

 

Types of outlier detection: 

 Statistical Distribution-Based Outlier Detection 

 Distance-Based Outlier Detection 

 Density-Based Local Outlier Detection 

 Deviation-Based Outlier Detection 
 
Statistical Distribution-Based Outlier Detection: 

The statistical distribution-based approach to outlier detection assumes a distribution or probability 

model for the given data set (e.g., a normal or Poisson distribution) and then identifies outliers with 

respect to the model using a discordancy test. Application of the test requires knowledge of the 

data set parameters knowledge of distribution parameters such as the mean and variance and the 

expected number of outliers. 

 A statistical discordancy test examines two hypotheses:  

A working hypothesis 

   An alternative hypothesis 

A working hypothesis, H, is a statement that the entire data set of n objects comes from 

an initial distribution model, F, that is, 

 



 

 
The hypothesis is retained if there is no statistically significant evidence supporting its rejection. A 

discordancy test verifies whether an object, oi, is significantly large (or small) in relation to the 

distribution F. Different test statistics have been proposed for use as a discordancy test, depending 

on the available knowledge of the data. Assuming that some statistic, T, has been chosen for 

discordancy testing, and the value of the statistic for object oi is vi, then the distribution of T is 

constructed. Significance probability, SP(vi)=Prob(T > vi), is evaluated. If SP(vi) is sufficiently 

small, then oi is discordant and the working hypothesis is rejected. 

 
An alternative hypothesis, H, which states that oi comes from another distribution model, G, is 

adopted. The result is very much dependent on which model F is chosen because oimay be an 

outlier under one model and a perfectly valid value under another. The alternative distribution is 

very important in determining the power of the test, that is, the probability that the working 

hypothesis is rejected when oi is really an outlier. 

 
There are different kinds of alternative distributions. 

Inherent alternative distribution: 

In this case, the working hypothesis that all of the objects come from distribution F is rejected in 

favor of the alternative hypothesis that all of the objects arise from another distribution, G: 

H :oi € G, where i = 1, 2,…, n 

F and G may be different distributions or differ only in parameters of the same distribution. 

There are constraints on the form of the G distribution in that it must have potential to produce 

outliers. For example, it may have a different mean or dispersion, or a longer tail. 

Mixture alternative distribution: 

The mixture alternative states that discordant values are not outliers in the F population, 

but contaminants from some other population, 

G. In this case, the alternative hypothesis is 

 
 

Slippage alternative distribution: 



 

This alternative states that all of the objects (apart from some prescribed small number) arise 

independently from the initial model, F, with its given parameters, whereas the remaining objects 

are independent observations from a modified version of F in which the parameters have been 

shifted. 

There are two basic types of procedures for detecting outliers: 

Block procedures: 

In this case, either all of the suspect objects are treated as outliers or all of them are accepted as 

consistent. 

Consecutive procedures: 

An example of such a procedure is the inside out procedure. Its main idea is that the object  that is 

least likely to be an outlier istested first. If it is found to be an outlier, then all of the more 

extreme values are also considered outliers; otherwise, the next most extreme object is tested, and 

so on. This procedure tends to be more effective than block procedures. 

 
Distance-Based Outlier Detection: 

The notion of distance-based outliers was introduced to counter the main limitations imposed by 

statistical methods. An object, o, in a data set, D, is a distance-based (DB)outlier with parameters 

pct and dmin, that is, a DB(pct;dmin)-outlier, if at least a fraction,pct, of the objects in D lie at a 

distance greater than dmin from o. In other words, rather that relying on statistical tests, we can 

think of distance-based outliers as those objects that do not have enough neighbors, where 

neighbors are defined based on distance from the given object. In comparison with statistical-based 

methods, distance-based outlier detection generalizes the ideas behind discordancy testing for 

various standard distributions. Distance-based outlier detection avoids the excessive computation 

that can be associated with fitting the observed distribution into some standard distribution and in 

selecting discordancy tests. 

 

For many discordancy tests, it can be shown that if an object, o, is an outlier according to the given 

test, then o is also a DB(pct, dmin)-outlier for some suitably defined pct and dmin. 

For example, if objects that lie three or more standard deviations from the mean 



 

are considered to be outliers, assuming a normal distribution, then this definition can be 

generalized by a DB(0.9988, 0.13s) outlier. 

Several efficient algorithms for mining distance-based outliers have been developed. 

 

Index-based algorithm: 

Given a data set, the index-based algorithm uses multidimensional indexing structures, such as R-

trees or k-d trees, to search for neighbors of each object o within radius dminaround that object. Let 

Mbe the maximum number of objects within the dmin-neighborhood of an outlier. Therefore, 

onceM+1 neighbors of object o are found, it is clear that o is not an outlier. This algorithm has a 

worst-case complexity of O(n2k), where n is the number of objects in the data set and k is the 

dimensionality. The index-based algorithm scales well as k increases. However, this complexity 

evaluation takes only the search time into account, even though the task of building an index in 

itself can be computationally intensive. 

 
Nested-loop algorithm: 
 

The nested-loop algorithm has the same computational complexity as the index-based algorithm 

but avoids index structure construction and tries to minimize the number of I/Os. It divides the 

memory buffer space into two halves and the data set into several logical blocks. By carefully 

choosing the order in which blocks are loaded into each half, I/O efficiency can be achieved. 

Cell-based algorithm: 

To avoid O(n2) computational complexity, a cell-based algorithm was developed for memory- 

resident data sets. Its complexity is O(ck+n), where c is a constant depending on the number of 

cells and k is the dimensionality. 

In this method, the data space is partitioned into cells with a side length equal to   Each cell 

has two layers surrounding it. The first layer is one cell thick, while the second is  

   cells thick, rounded up to the closest integer. The algorithm counts outliers on a cell-

by-cell rather than an object-by-object basis. For a given cell, it accumulates three counts—the 

number of objects in the cell, in the cell and the first layer together, and in the cell and both layers 

together. Let’s refer to these counts as cell count, cell + 1 layer count, and cell + 2 layers count, 



 

respectively. 

 

Let Mbe the maximum number of outliers that can exist in the dmin-neighborhood of an outlier. 

   An object, o, in the current cell is considered an outlier only if cell + 1 layer count is less than 

or equal to M. If this condition does not hold, then all of the objects in the cell can be removed 

from further investigation as they cannot be outliers. 

   If cell_+ 2_layers_count is less than or equal to M, then all of the objects in the cell are 

considered outliers. Otherwise, if this number is more than M, then itis possible that some of 

the objects in the cell may be outliers. To detect these outliers, object-by-object processing is 

used where, for each object, o, in the cell, objects in the second layer of o  are examined. For 

objects in the cell, only those objects having no more than M points in their dmin-

neighborhoods are outliers. The dmin-neighborhood of an object consists of the object’s cell, 

all of its first layer, and some of its second layer. 

A variation to the algorithm is linear with respect to n and guarantees that no more than three 

passes over the data set are required. It can be used for large disk-resident data sets, yet does not 

scale well for high dimensions. 

 
Density-Based Local Outlier Detection: 

Statistical and distance-based outlier detection both depend on the overall or global distribution of 

the given set of data points, D. However, data are usually not uniformly distributed. These methods 

encounter difficulties when analyzing data with rather different density distributions. 

To define the local outlier factor of an object, we need to introduce the concepts ofk- distance, k-

distance neighborhood, reachability distance,13 and local reachability density. 

These are defined as follows: 

The k-distance of an object p is the maximal distance that p gets from its k- nearest neighbors. This 

distance is denoted as k-distance(p). It is defined as the distance, d(p, o), between p and an object o 

2 D, such that for at least k objects, o0 2 D, it holds that d(p, o’)_d(p, o). That is, there are at least k 

objects in D that are as close asor closer to p than o, and for at most k-1 objects, o00 2 D, it holds 

that d(p;o’’) <d(p, o). 



 

 
That is, there are at most k-1 objects that are closer to p than o. You may be wondering at this 

point how k is determined. The LOF method links to density-based clustering in that it sets k to the 

parameter rMinPts, which specifies the minimum number of points for use in identifying clusters 

based on density. 

 

Here, MinPts (as k) is used to define the local neighborhood of an object, p. 

The k-distance neighborhood of an object p is denoted Nkdistance(p)(p), or Nk(p)for short. By setting k 

to MinPts, we get NMinPts(p). It contains the MinPts-nearestneighbors of p. That is, it contains every 

object whose distance is not greater than theMinPts-distance of p. 

 

The reachability distance of an object p with respect to object o (where o is within 

theMinPts-nearest neighbors of p), is defined as reach 

distMinPts(p, o) = max{MinPtsdistance(o), d(p, o)}. 
 
 

Intuitively, if an object p is far away , then the reachability distance between the two is simply their 

actual distance. However, if they are sufficiently close (i.e., where p is within the MinPts-distance 

neighborhood of o), then the actual distance is replaced by the MinPts- distance of o. This helps to 

significantly reduce the statistical fluctuations of d(p, o) for all of the p close to o. 

The higher the value of MinPts is, the more similar is the reachability distance for objects within 

the same neighborhood. 

Intuitively, the local reachability density of p is the inverse of the average reachability 

density based on the MinPts-nearest neighbors of p. It is defined as 

The local outlier factor (LOF) of p captures the degree to which we call p an outlier. It is 

defined as 



 

 

It is the average of the ratio of the local reachability density of p and those of p’s MinPts-

nearest neighbors. It is easy to see that the lower p’s local reachability density is, and the 

higher the local reachability density of p’s MinPts-nearest neighbors are, the higher LOF(p) 

is. 

 
Deviation-Based Outlier Detection: 

Deviation-based outlier detection does not use statistical tests or distance-based measures to 

identify exceptional objects. Instead, it identifies outliers by examining the main characteristics of 

objects in a group. Objects that ―deviate‖ from this description are considered outliers. Hence, in 

this approach the term deviations is typically used to refer to outliers. In this section, we study two 

techniques for deviation-based outlier detection. The first sequentially compares objects in a set, 

while the second employs an OLAP data cube approach. 

Sequential Exception Technique: 
 

The sequential exception technique simulates the way in which humans can distinguish unusual 

objects from among a series of supposedly like objects. It uses implicit redundancy of the data. 

Given a data set, D, of n objects, it builds a sequence of subsets,{D1, D2, …,Dm}, of these objects 

with 2<=m <= n such that 

 
 
Dissimilarities are assessed between subsets in the sequence. The technique introduces the 

following key terms. 

Exception set: 

This is the set of deviations or outliers. It is defined as the smallest subset of objects whose 

removal results in the greatest reduction of dissimilarity in the residual set. 

Dissimilarity function: 



 

This function does not require a metric distance between the objects. It is any function that, if 

given a set of objects, returns a low value if the objects are similar to one another. The greater the 

dissimilarity among the objects, the higher the value returned by the function. The dissimilarity of 

a subset is incrementally computed based on the subset prior to it in the sequence. Given a subset 

of n numbers, {x1, …,xn}, a possible dissimilarity function is the variance of the numbers in the 

set, that is, 

 
 
where x is the mean of the n numbers in the set. For character strings, the dissimilarity function 

may be in the form of a pattern string (e.g., containing wildcard characters that is used to cover all 

of the patterns seen so far. The dissimilarity increases when the pattern covering all of the strings 

in Dj-1 does not cover any string in Dj that isnot in Dj-1. 

 
Cardinality function: 

This is typically the count of the number of objects in a given set. 

 

Smoothing factor: 

This function is computed for each subset in the sequence. It assesses how much the dissimilarity 

can be reduced by removing the subset from the original set of objects. 


