thitatvtedddesshrraecheoRteafidRdodododobd oo dosdd ot dobtrdDod e baddde

STATISTICAL COMPUTING AND R PROGRAMMING

Module-02

Readmg and writing files, Programmung, Calling Functons, Conditions and Loops: stand-
alone statement with llustrations m exercse 10,1 stacking statements, codmg bops, Wriling
Functions, Exceptions, Tunings, dnd Visibility.

2 MARKS QUESTIONS.

1.What is standalone statement with example.

2. What are all the coding loops using in R

3. What is function with symtax.

4. What & global and Jocal vanable.

S.Explain wvpes ol reading files,

IMARKS QUESTIONS,

1.Explain difference between Conditional siatemenis and coding loops in R

2. Exphin coercion with exumple program.

3.Write a R program how to take the mput from the user using readline() functon inchides
NAME AGECLASS SECTION, COURSEULCMS NUMEER

4. What & Function. Explin function decliraton and function call n program

S.what i cluss and Explain # types of class.

SMARKS QUESTIONS.

1.Explain the condtiona] statements with example program

2.What s recursive function? To write 4 R program tiake the mput from the user To find
factorial of given number using recursive function.

3.Expahin Control flow mechunism |)Break2)next.3)repeate siatements with example

4 What is exception: To implement R program wsing fimetion with try, catch. finally

RGBS EREIRGERER YRR ARG ENRREERRBEREREGRRERER GRS EARR R REER R A R R SR

exception: handling.
5.Expalin Time and Visibility/progressbar with example.

HIMARKS QUESTIONS.

1. What is function . Explain types of functions. To build cme R program Largest of three numbers
using funcoon.

2. Explain Conditiona] starements in detdl with example program

3.What are all the Coding lnops usimg in R with example program,

4. Explin Exception Handling with syntux and example program.

S.write a R Program that includes differem operitors, control structures, defaul values for arguments,
retuming complex ohpcts.

JSSCACS 2023-24 ROOPA

o S i e e W O R Y Tl e el Ol ol 0 T W el s e N e el R i N i o e il v N R el Y e Y R il il

- |
i
o
L
]
&
=
o
-
¥
i
-
&
i
=
&
kL
]
i
- 4
L
&
=
&
'
o
f]
i
L
dr
&
-
' d
|
]
¥
-
&
&
&
£
w
2]
L]
&
-
- 4
L)
k]
]
rJ
-
b
&
&
R
W
-
il
]
]
]
=
&
.*
i
&
-
L
&
-
&
-
L
i
&
L]
L
=
i
4]
i
-
.
-
&
i
&
[*]
r
&
i
]
&
]
&
&
i
=
o
&
k|
L 4
|
]
E
L

S T R R R B D TR B O R S A

UNIT-II

R-Ready Data-Sets SO
« R provides built-in data-sets. .Q;"

= Data-sets are also present i user-contrnibuted-packages. ,{"5‘

* The data-sets are useful for learning, practice and experimentation.

S

« The datasets are useful for data analysis and statistical modelling. LT

« data() can be used to access a list of the data-sets. _ L“r\

= The Iist of availlable data-sels is organized O

) alphabetically by name and i) grouped bypacka@\\ The availability of
the data-sets depends on the nstalled cnntrhumd—pae@gﬂ:.

Built-in Data-Sets “-:m

* These datasets are included in the hiLﬁt}.R\i]ﬁlﬂﬂﬂliﬂ[‘l

» These data-sets are found in the packagecalled "datasets.”

For example, S\

R> library(help="datasels") i%{t}xﬂfw sunmary of the data-sets within the

package .\"\
R> Help(“C hickwi‘l:%@ # to get info about the " ChickWeight' data-set

R> Chickﬂelgb}'fﬁ.] # To display the first 5 records of ChickWeight
A
Contfibuted Data-Sets
:*Chhn?ributed datasels are created by the R-community.
e The datasets are notincluded in the base R installation.
oA "+ But the datasets are available through additional packages.
Y * You can install and load additional packages containing the required datasets.

For example,
R> install. packages("tseries") # to install the package

JSSCACS 2023-24 ROOPA

R> library("tseries") # to load the package

R library(help="tseries") # to explore the data-setsin "' tseries ' package
R help(“ice.river’™) # to get info about the "ice.river' data-set R>
data(ice.river) # To access the data in your workspace

O
R ice.river| 1:5.] #display the first five records ‘Q}
S
Reading in External Data Files >
You can read data from external files using various functions. ‘Q—-
©
Table Format k

* Table-format files are plain-text files with three te:tmn‘:&__
1) Header: If present, the header is the first line of rﬁqﬁe
The header provides column names. Q

2) Delimiter: The delimiter 18 a character usg{ntﬁi separate entries n each line.
3) Missing Value: A unique characterstring denoting missing values This
1s converted to "NA" when readmg ‘Iﬁﬂn format files typically have
extensions like “.1xU" or".csv'. \

N
Reading Table-Format FEIQ w
* read.table() is used for-
i) reading data from {able-format file (typically plain text) and ii)

creating a dafi frame from it.

* This functionsis :".‘funnnnn]y used for importing data into R for further analysis.
A *

Syntax:read.table(file, header = FALSE,sep=""")

whefe. file: The name of the file from which data should

h:@étre;td. This can be a local file path ora URL.

A
””"‘"” header: This mdicates whether the first row of the file contains column names
' Default is FALSE.

sep: This represents the fiekd separator character,

Default s an empty strmg "".

JSSCACS 2023-24 ROOPA

Example: Suppose vou have a file named dataixt with the following content:
Nume Age Cily

Krshna 26 Mysore

Aruna 31 Mandya

Kama 29 Maddur 4 (}
* To read this data into R and create a data frame fromit: # ---*
Specify the file path ...3\\»\ '
file_path <~ "data.txt” 1-..:\'

v
Use read.table to read the data into a data frame my_data <)~
<- read table(file_path, header = TRUE, sep = "\t") 9,

Y
S
View the resulting data frame print(my_data) \‘l
-
Output: Q
Name Age City “:...
Krishna 26 Mysore \ \.,\ ’
Arjuna 31 Mandya —
Kama 29 Maddur <V
Y
o
Explanation of above pﬂﬁnm:

» file_path is set to U{@ﬂimn of the data.txt file,

* We use read.table to read the data from the file into the my_data data frame.

* The header argument is set to TRUE because the first row of the file contains
column r:;%’ * The sep argument is setto "\t" because the file uses tab as the
field s or.

A

2 ‘-Tcwread.tableﬂ can be used for reading tabular data from web-based files.

C_:\- = We can import data directly from the internet.

: Example: To read tabular data from a web-based file located at the following

URL: httpsv/example.convdata.txt

Specify the URL of the web-based file

url <- "httpsvy/example.com/data.txt"

JSSCACS 2023-24 ROOPA

Use read.table to read the data from the web-based file my_data
<-read.table(url, header = FALSE, sep="\t")

View the resulting data frame
print(rmy_data)

O
S
~
A

Explanation of above program:

« url is set to the URL of the web-based [ile. 'f--.ﬁ,

» We use read.table to read the data from the specified URL into Ihén(n'y data
data frame. ~

* We set header to FALSE since the data file doesn't have 'héader row.

* We specify sep as "\t" because the data is tab- sepdratmi.;l[' data were

commaseparated, you would use sep =".". ‘\.{-—

Y
Spreadsheet Workbooks -«
. R often deals with spreadsheet s w,fh@m file formats, such as Microsoft
Office Excel's ".xIs" or ".xlsx",
. Exporting bpmﬂdnheettﬂes\éutable format, like CSV, is generally
preferable before working w"’k}}
N
Reading CSV Files~ "
« read.csv() i use@_ ading comma-separated values (CSV) files.
* It simplifies Lhc\pmcess ofimporting data stored in CSV format into R.
Syntax: read?(‘:!v(ﬁle. header= TRUE,sep="".",)
where 1 %The name of the file from which data should
be raatf"i*{.l‘h?us can be a local file path ora URL.
‘ ,*"'J
: yaﬂ\eﬁder: This indicates whether the first row of the file contains column names
F A Default is FALSE.
¥,

sep: This represents the field separator character.

Default is an empty string ""
Example: Supposeyouhave a CSV fike named data.csv with the following
content:

JSSCACS 2023-24 ROOPA

Name Age City
Knshna 26 Mysore
Arjuna 31 Mandya
Kama 29 Maddur

» To read this data into R and create a data frame from it; # 4 L;ﬁ_.,
Specify the file path —
file_path <- "data.csv" O
N
-~
Use read.csvtoread the CSV data into a data frame my_data . >
<-read.csv(file_path) Q.. ’
e
View the resulting data frame \}_-\
print(my_data) Output: ‘\-:
Name Age City &
Krishna 26 Mysore L
Arjuna 31 Mandya ____‘
Karna 29 Maddur
A2
Explanation ol above pmgramﬂ::h
» file_path is set to the k)calig\s\\{’:‘ft data.csv file.

* We use read.csv to read m‘%\d ata from the CSV file mto the my_data data
frame. * Since the CSV file has a header row with column names, we don't
need to specify ﬂﬂ}_ der argument explicitly; it defaults to TRUE.

* The default ieggrgumeut is ".", which is suitable for CSV files.

N

Wﬁt'g%;bht Data Files and Plots
. le.;_,;a write data to external files using various functions.

S
- "Writing Files
< X ng
. © = write.table() is used to write a data frame to a text file.

Syntax: write.table(x, file. sep= " ".row.names = TRUE, col.names =
TRIUE, quote

JSSCACS 2023-24 ROOPA

= TRUE) where x: The data frame or matrix to be
written to the file. file: The name of the file where the
data should be saved.

sep: This represents the field separator character (e.g., "\t" for tub-separated
values, "," for comma-separated values).

row.names: A logical value indicating whether row names should be written to L\

the file. Default is TRUE. .Q‘x
col.names: A Jogical value indicating whether column names should be WEEQ}
to the file. Default s TRUE

quote: A logical value indicating whether character and factor field r;.m,b.llq::uld be
enclosed n quotes. Default 1s TRUE.

Example: Suppose you have a data frame my_data that you w@i‘}[’ wrile 1o a
text file named "my_datatxt”. _}\

N

P—

Sample data frame my_data ~
<- data, frame NV
Name = c("Arjuna”, "Bhima", "Krishna"), *:-...,
Age = ¢(25, 30, 22), X '\.,‘ :

Score = (83, 92, 78) -

) &

Specify the file name .

file_name <- "m}'_dﬂta.g‘ﬂ\‘,\

Use write.table to save the data frame to a tab-separated text file
write.table(my 'il@,a. file = file_name, sep ="\t", row.names = FALSE,
col.names ~

- mua}mre TRUE)

#\'ébﬁﬁrmntinn message
E ‘f.::uatipaste{"Dﬂm saved to", file_name))
LN
-y
-~ Explanation of above program:
» We have asample data frame called my_data with columns "Name." "Age,"
and

l

Ilsc'ﬂm_”

JSSCACS 2023-24 ROOPA

* We specily the file_name as "my_data.txt” to define the name of the output
file.

= We use the write.table function (o write the data frame to the specified file.

* We set sep to "it” to indicate that the values should be tab-separated.

= We use row.names = FALSE to exclude row names from the output.

» We set col.names = TRUE to include column names in the output. —

* We set quote = TRUE to enclose character and factor fields n quotes for MQx

Yy

O

proper formatting. :
N
1-:"\7.‘
&
Plots and Graphics Files _ L“_r
Using "jpeg” Function \}_’-\

« jpeg() is used to create und save plots as JPEG image Fi%

* You can specity parameters like the filename, widih@pight, and quality of the
JPEG image. Syntax: jpeg(filename, width, height) where

file: The name of the JPEG image file to w]ﬁclﬁhe Qmphics will be written

width and height: The width and height of @TPEG image in pixels.

Example: < \:}

Create sample data _ \';—"'

x<-e(l,2,3,4.5) “::(\

y<-¢(l.4.9, 16, 25) Q\”H‘

Open a JPEG gljﬂb@}s' device and save the plot to a file jpeg(filename
= "scatter_plot.jpg ' width = 800, height = 600)

Q;)
Replot @‘éﬂme graph (this time it will be savedas a JPEG) plot(x,
V. tvp ":\Jp '.main = "Scatter Plot Example")

A
Mii’w. ffi() # Close the JPEG graphics device
"
\:-n Explanation of above program:
- * We create a simple scatter plot of x and y data points.
» We use the jpeg() function to specify the output as a JPEG image with the
filename "scatter_plot.jpg.”

JSSCACS 2023-24 ROOPA

* We set the dimensions of the output image using the width and height
parameters (S00x600 pixels).

= The quality parameter is sct to 90, which controls the image compression
quahty (hgher values resull in better quality but krger file sizes).

* After opening the graphics device, we replot the same graph, which is now At
directed to the JPEG file. A\
= Fmally, we close the JPEG graphics device using dev.oft(). N\ O
Seater ot Example "':-l
>
L
. __\C&
o LL'
N
; ‘
Using "pdl" Function P i

* pdf() can be used to create and sav];nb; as PDF files.

Syntax: pdf(file, width, height) wheré file: The name of the PDF
file 1o which the graphics will bewfitten. width and height: The
width and height of the PQ{%ngé in inches.

Example:) "':;5*

Create a simple t@rplot X

<c(l,2,3.4,5)

y <-c(1, 4. 9546725)
Sy
Opena PDF file for plotting
E{t@uuer_pzm.pdr', width = 6, height = 4)
™

A “# Create a scatter plot
e plot(x, v type = "p", main = "Scatter Plot Example”, xlab = "X-axis". ylab =
" "Yi]xis"}

Close the PDF file
dev.off()

JSSCACS 2023-24 ROOPA

Explanation of above program:
* We open a PDF graphics device using pdf() and specify the name of the output
PDF

file, as well as the dimensions (width and height) of the PDF page.

A
» We create a scatter plot using the plot() function. __L
* The graphical output is written to the "scatter_plot.pdf™ file in PDF format '.'an

= We close the PDF device using dev.off() to complete the PDF file. t-..:\'ﬁh

Soatter Piot Evample

T T
1 F 3 Ll

Ad Hoc Object Read/Write Operations
* Most common input/output ops ations involve data-sets and plot images.

* For handling objects like]&&.ﬂr arrays. you can use the “dput” and “dget’
commands. | ":‘-3\
o)
Using “dput” to Write Objects
» dput() is usedw wrile objects inlo a plain-text file.
« It's ofter .-nsah: save complex objects like lists, data frames, or custom
objectshura human-readable format.
S_w:@':*: put(object, file = ""') where object: The R
1 jhc'l."ynu want to serialize to R code. file: The name
. xﬁihc file where the data should be saved.
: L
Sh |
-~ Using "dget’ to Read Objects
* dget() is used to read objects stored in a plain-text file created with “dput’.
Syntax: dget(file) where file: The name of the [ile from which data should be
read.

Example: Program to illustrate usage of "dput” and “dget’
JSSCACS 2023-24 ROOPA

Create a sample list
my_list <- list{ name =

"Rama", age = 30),
city = "Mysore",
’ L
Use dput to serialize the list and save it to a text file dput(my_list, Q\,‘“
file = "my_list.txt") a.,:"b‘
o~
h"
Use dget to read and recreate the R object from the text file !-Qz;gj}md_list
<-dget(file = "my_list.ixt") (_j}
O
b =

Print the recreated R object print(recreated _list) Q\-
{:__

Explanation of above program: Q

« We start by creating a saumple list named m :‘IIST This list contains various
elements, including a name, age, city, a vector of hobbies, and a Boolean vilue
indicating whether the personis a studgnt.

* We then use the dput() function tﬂ\me the my_list object to a plain-text file.

« The first argument to dput() isﬁﬁmbjecl my_list,

= The second argument, ﬁ@ﬁes the name of the file my_list.txt where

* We use the dget() functien™to read the object from the specified file.

* The file argument -iﬂ&@e‘t(} specifies the name of the file from which to read
the object {my_li:-}t&it in this case).

=

L
Callifs Yunctions

Sg_n@g
_ n..:; coping-rules determine how the language accesses objects within a session.
_\ + These rules also dictate when duplicate object-names can coexist.
e,

Environments

« Envimonments are like separate compartments where data structures and

functions are stored.
* They help distinguish identical names associated with different scopes.

JSSCACS 2023-24 ROOPA

* Environments are dynamic and can be created, manipulated, or removed.
= Three important types of environments are:

1) Global Environment
2) Puckage Environments and Namespaces) (}
3) Local Environments —=
H
Global Environment N>
« It is the space where all user-defined objects exist by default, h-.._
* When objects are created outside of any function. they are ﬂmrcdﬁglubal
environment.
« Use: Objects in the global environment are accessible fi aﬁy\x:here within
the session. Thus they are globally available. "\
="Is()" lists objects in the current global euvrunment\
« Example: Q
R>vl <-9 "ﬁ
R v2 <- "victory" ‘::H
R> Is0) [1] SO
W P e am AN
vi" "v2 4 :\\
Local Environment . Q\v
» Local environment i ed when a function is called.

* Objects defined {'h a function are typically stored in s local environment.

* When a function pnﬁlp]ﬁ[e:s. its local environment is automatically removed.

* These Bny,j:ﬁhménls are isolated from the Global Environment.

* This ﬁ(ﬁw ihentical argument-names in functions and the global workspace.

» Use; [ocal environments protect objects from accidental modification by
Jrfhhf:r functions.

H#, efine a function with a local environment

\ my_function <- function() { local_var <-42
“"':"’ return(local_var)

|

Package Enviromment and Namespace
* It is the space where the package's functions and objects are stored.

JSSCACS 2023-24 ROOPA

* Packages have multiple environments, ncluding namespaces.
» Numespaces define the visibility of package functions.

» Use: Package environments and namespaces allow you lo use functions from
different packages without conflicts.
Syntax to list tems in a package environment:

O
“Is("' package:package name'). —

"

R Is("package:graphics") #lists objects contained in graphics package
environment ,.,__;-,
Hﬂbl_i[l‘E“ "mwsn ""ISSUCPk]I." “M“ ; ,L'.r
>
Search-path K_

* A search-path is used 1o access data structures and lunn@ from different
environments, = N

* The search-path is a list of environments availa jin the session.
=« search() is used 1o view the search-path, ":'-“ -
= Example: T:' '
R> search() 4 .\.}
" GlobalEnv" "package:stats" "paﬂhge .graphics" “package:base”
* The search-path >
i) starts at the global | '\Jmnem: (.GlobalEnv) and u)
ends with the b ackage environment (package:base).
* When looking foran b]eu R searches environments in the specified order.
« If the object i ‘11[und in one environment, R proceeds to the next in the
searchpath. Ta..,
- envin:\‘ () can be used to determine function's environment.
R> environment(seq)
{MT'ﬂnment' namespace:base>
x,B:- environment{arrows)

= Example: _“i‘\JL\
\ >

\, <environment: namespace:graphics>
{0

. . ol

Reserved and Protected Names
Reserved Names

= These names are used for control structures, logical values, and basic
operations.

JSSCACS 2023-24 ROOPA

A 5
>

* These names are predefined and have specific functionalities.
= These names are strictly prohibited from bemg used as object-names.
= Examples:

it, else, for, while, function, TRUE, FALSE, NULL
Protected Names _“L_f'f
* These names are associated with buili-in functions and objects. -:-.l{‘\\
* These names are predefined and have specific functionalities. ?__:\,*
* These names should not be directly modified or reassigned by users. ";-»H
« Examples: -S"T

Functions like c(}, data.frame(), mean() Ohjects N\

like piand letters. o

%

-

Argument Malching \"‘

« Argument matching refers to the process by “@functinn-argumenm are
Y

matched to their corresponding pmmter—@ws within a function call

; : \
* Five ways (o match function urgumenlttgek

1) Exact matching =
2) Partial matching t_{\\"‘
3) Positional mu[chjng_‘\v“j
4) Mixed matching ﬁtﬂ]jpsis (...) argument
KS
Exact {C_}“ "

* Exact matchirtg is the default argument matching method.
« In this, Tq%’nts are matched based on their exact parameter-names.
* Adv; (ages

1) Less prone to mis-specification of arguments. 2) The order of
#<\' arsuments doesn't matter.

»Disadvantages:

1) Can be cumbersome for simple operations.
2) Requires users to remember or look up full, case-sensitive tags.

* Example:
R> mat <- matnx(data=1:4, nrow=2, ncol=2, dimnames=hst(c("A","B"),
¢("C","D"))

JSSCACS 2023-24 ROOPA

R > mat

CD
Al3
B24 :
Partial Matching ,\.;;Q' -
, * Partial matching allows to specify only a part of the parameter-name as *nl!\ 4
; argument. k\’
\ * The argument is matched to the parameter whose name starts with t]‘lq.:::"
: provided partial name. ..Q__‘r
= Example; ®,
R mat <- marwix(nr=2. di=list(c("A"."B"), ¢("C"."D")), nc= =1:4)
‘ R> mat {:

CD -
i; Al3 i(:_j
B24 <
5 0
* Advantages: | Hk}
1) Requires less %&mmpﬂmd to exact matching.
2) Argument % still visible, reducing the chance of mis-
specification. -\‘3 ’
« Disadvantages: o
1) ,Gmgcnme tricky when multiple arguments share the same
starting lettets-in (heir {ags.
%}F\/Eauh tag must be uniquely identifiable, which can be
challenging to remember.
&

P« ’:_ nal Matching
&Positional matching occurs when you specify arguments in the order in which
¢ \[the parameters are defined in the function’s definition.
C--, * Arguments are matched to parameters based on their position.
7 eargs()can be used to find the order of arpuments in the function.
» Example: R> args(matrix)
function (data = NA, nrow = |, ncol = 1, byrow = FALSE, dimnames = NULL)
NULL

JSSCACS 2023-24 ROOPA

R>mat <- matrix(1:4, 2, 2, F, list(c("A","B"), ¢("C","D")))
R> mal

cCD
Al3 :
B24 £
&
N
= Advantages: _‘3}
1) Results in shorter, cleaner code for routine tasks. 2) No need to reme,m&uf"
specific argument tags, ™
L
» Disadvantages: (._}

1) Requires users to know and match the defined order o f"[_éhmemb
2) Reading code from others can be challenging, e&pmﬂy for unfamiliar
functions.
xQ
Mixed Matching
» Mixed matching allows a combination of eiacl partial, and positional
matching in a single function call. U

* Example: ¢ "‘
R> mat <- matrix(1:4, 2, 2, C].Iqt‘""hb (e("A","B").e("C"."D")))
R> mat .&
CD
Al3 K_/
B24
Y
Dut-l)m-éot : Use of Ellipses

Elh;fs'h argument allows you to pass a variable number of arguments to a

:ﬁqnnun * Example:
Functions like “¢()", "data.frame()", and "list()"

« Example;
&--a\ P

s

R> args(list)
function (...)
NULL

JSSCACS 2023-24 ROOPA

Conditions and Loops
Conditional construets allow programs to respond differently depending on

whether a condition is TRUE or FALSE. There are 3 types ol decision statements:

|) if statement _
2) if else statement & T
3) nested if statement %k'}
4) else if ladder (stacking if Statement) *-l\}
5) switch statement h’:\,‘*

.
Stand Alone Statements (if Statement "Q-}

The if statement is the simplest decision-making statement whiﬂ#@lps us to
tuke a decision on the basis of the condition. L

The block of code inside the if statement will be Ex&uted:{)\l}' when the boolean
expression evaluates to be true. If the statement Eva‘@mes false, then the code
which is mentioned after the condition will run. S@ar

iftboolean_expression)

('i'"'k
// Tf the boolean expression is true, Lhmﬂaﬁteme-nt[s:] will be executed.
} P ooy
Example: \;\
x <-20 AN
y<-24 ﬂ*‘:*
if(x<y) 2 ‘k_ »
{ O
print(x."is a .qqa;]er numberin")
] a O
Output: @:ﬁ. a smaller number
_@M ne Statements (if Statement) with illustration in exercise 10.1

f@:ndm solvedin class and refer in class notes)

. \T‘l'f-else statement
-f{-l"""; There is another type of decision-making statement known as the if-else

: statement. An if-else statement is the if statement followed by an else statement.
An if-else statement, else statement will be executed when the boolean expression
will fake. Syntax:

ifiboolean_expression)

JSSCACS 2023-24 ROOPA

{

/# statement(s) will be executed if the boolean expression is true.

| else

[

f/ statement(s) will be executed if the boolean expression is false. |} ~
Example: x\k_} :
a<- 100 N 8
if(a<20) %&Q
{ -~y

cat("a is less than 20\n") ?,“
| else X

{ s

cat("a is not less than 20\n") O

! R

cat("The value of ais", a) Q_
Output: ais not less than 20 @
The value of a is 100 ‘;(;_-...,“‘
A

else if Statement (Stacking "if’ SL@“E}

This is basically a “multi-way™ d&'kis n statement. This is used when we must
chooseamong many alternatives.
The expressions are evalu
an expression is evalual

m order (Le. top 10 bottom). If
true, then

— statement assnce‘lt/ with the expression is executed &
—+ control eun@u of the entire else if ladder Syntax:
il’{exprﬁssigul?»

{ ,\'\-«

sttt !ﬁéhL:

Ky
.'\WE if{(expression)
s ¢ {

1D

y ¥ statement2;

: | else
if(expression3)
| stalement3

JSSCACS 2023-24 ROOPA

|

else if(expressiond)

| statementd

| else :

default statement5 FA
; O

Example: '\}T
marks=83; if(marks>75){ N:‘l
print("First class")]else A
illmarks>635)(o).
print("Second class") L::‘*
Jelse if{marks>55)(O
print("Third class")
jelsef Q

print("Fail") -
} Q)

Output: First class v

nested if Statement HO
An if-else statement within anotherif-else statement is called nested if statement.
This is used when an action performed based onmany decisions. Hence,
it is called as mult-way K&%mn Syntax: ifiexprl) [if(expr2) statement] else
statement? -~

N
| else { AN
iflexpr3) At
statement3 Y

B]S'E = lr"

5&1&:{1{@

}.ﬁ\"ﬁ
_ Here, firstly exprl is evaluated 1o (rue or false.
,\T\ O If the exprl is evaluated (o true, then expr2 is evaluated to true or false.

*-""': = Il the expr2 is evaluated to trui, then statementl is executed.
: o If the expr2 is evaluated o false, then statement2 is executed.

O If the exprl is evaluated to false, then expr3 is evaluated to true or false.

« Ifthe exprd s evaluated to true, then statement3 is executed.
o If the expr3 is evaluated to false, then statementd is executed.

JSSCACS 2023-24 ROOPA

Example:

@ <=7
b<-8
c<-Gif(a>b){if (a :
>) | cat("largest = 5 e
"o, ") &
| else [cat("largest "'-l\}
=".¢, "\n") NS
* .
| else { if _.*’Q-‘
(b>c) | 5
cat("largest =", b, "\n") "I_O
‘ } else | cat("largest Q\

E ="y¢, "\n") .Q_
o Q

} Y

Output: T

Largest Value is: 8 e,
1—1

Using “ifelse” for E[ement-wj\' ecks
ifelse()
O performs cnnd.\uanm;:nemmﬂ.a on each element of a vector

O returns correspe ing values based on whether condition is TRUE or
FALSE.

This is pankuhhy"mefm when you need to perform element-wise conditional
npe_raﬂnn@\d&t_a structures.
AN
: Sjﬂ\m
' 1:-([&5[ves, no) where test: A logical vector or expression that specifies the
J\\\nndmnn to be tested.
yes: The value to be returned when the condition is TRUE. no:
The value to be returned when the condition is FALSE.
Example:
Create a numeric vector
grades <- ¢(85, 92, 78, 60, 75)

JSSCACS 2023-24 ROOPA

Use ifelse to categorize grades as ""Pass' or "'Fail” pass_fail
<- ifelse(grades >=70, "Pass", "Fail")

Display the result

pass_luil Output:

"Pass" "Pass" "Pass" "Fail" "Pass”

Explanation of the program ‘\JL\
We have a vector grades containing numeric values representing exam Sr:oi'ag\?
We use ifelse() to categorize each scoreas "Pass" if it's greater than maq‘ﬁll to

70, or "Fail" if it's less than 1- >

70. Ur

The resulting pass_fail vector contains the categorization h;nié_d n the
condition. Q

switch Statement Q
This is basically a “multi-way™ decision statcm'g'h
This is used when we must choose among nﬁﬁi&' alternatives.

Syntax: { '\,}

switch(expression, f‘\"x

casel, resultl, case, /\

result2, ";\;'

....... default) where c&tssmn. The expression whose value you want to
match against the Cﬂgl{:_chsel case2, ...: Values to compare against the
EXpression. _/

resultl, result2y_.:: Code blocks when the expression matches the
currespnnd-inﬁ?ﬂsﬂ. default: (Optional) Code block when none of
the casgsynatch. Example: grade <- "B"
Chicck the grade and provide feedback switch(grade.
”{h\: cat("Excellent!\n"),
: \'{‘*‘B = cat("Well done'n"),
C—-, "C" = cat("You passedin”),
-7 "D" = cat("Better try again\n"),
cat("Invalid gradein")
)

Output:

JSSCACS 2023-24 ROOPA

A
D

Well done

Coding Loops

* Loops are used to execute one or more statements repeatedly.
= There are types of loops: \‘Lﬁ
1) while loop

2) forloop
3) Repeated ﬁ-z;‘:h

loo o
P ‘L}:.'_

for Loop S
. “for loop is useful when iterating over LO
elements in a vectors, lists or dataframes. Q\
. Syntax: for (variable in sequence) | Q_
Codeto be executed in each iteration Q
) <
where
variable: The loop-variable that takes‘duvalues from the sequence in each
teration. sequence: The ﬁaqueni@hes over which the loop iterates.
Example: \)
numbers <-¢(1, 2, 3, 4,’%@
(i in numbers) | print(2*
) O

Output; 2 @
46810 _°

L
L

b

Nesting for Loops
Ndsﬁ@ for loops involves placing one for loop inside another.
5 allows you to create complex iteration patterns where you iterate aver

elements of multiple data structures.

Example:
for (G in 1:3)
{

for(j in 1:3)

JSSCACS 2023-24 ROOPA

product <-1 * j cat{product,

”\]It"}

| cat("n")

} Output: A
123 & .
246 Sy

369 T
%&

Explanation of above program: QJ
The outer loop iterates through i from 1 to 3. Q:*

For each value of i. the inner loop iterates through j from 1 {‘91_5.-
Within the inner loop, it calculates the productofi and | W ?hlch is i *# j, and
prints it (o the console fullowed by a tab character (”

After each row of products is printed (after the m@!onp}. a newline character
("\n") is printed o move to the next row.

v...,_"*
X
while Loop A2
) p—
" A while loop statement can ‘nsed to execute a set of statements

repeatedly as long as a given cm;l on is true.
. Syntax: whﬂe{expresqtr
{ '\h
statement | ;) L
| * Firstly, the expngsﬂml is evaluated to true or
f:]lbﬁ o
. e Ei’pressinn is evaluated to false, the control comes out of the loop
-.-.-imun“\?z‘xecuuna the body of the loop.
=1 the expression is evaluated (o true, the body of the loop (Le.
t”tgb’meml} is executed.

{ J\ 1‘ After executing the body of the loop, control goes back to the beginning
;_.,’ ol the while stutement.

Example:

i <- 1 # Initialize a variable

while (i <=3) |

JSSCACS 2023-24 ROOPA

cat"Welcome to R 'n") 1

<1+ 1
!
Output:
Welcome lo R 4 L\
Welcome to R —
Welcome to R M‘-\JL\\
O
Example: Program to Create Identity Matrices # >
Specify the size of the identity matrix (e.g..n=4)n Q_*
< drow <=1 _ Q_}
identity_matrix <- matrix(0, nrow =n, ncol =n) ‘1_0
Use a while loop to populate the matrix Q
while (row <= n) { identity_matrix[row, row] -
<- | row <-row + | ’
Print the identity matrix kvad
print(identity_matrix) Qutput: i \..\ "
[.11[.2] [,3] [.4] -
L1 o0 0 0 A
2] 0 1 0 0 &N\
[3.] 0O 0 1 0 \‘»\
-
41 0 o oy
\
Explanaﬁun,ugﬂiuve program:

* We ﬁpea@fhe size of the identity matrix (in this case, n =4),
« We iniiitize a variable row (o 1 and create an empty matrix identity_matrix of

-

size-n x n filled with zeros.

1-"’:\:J use a while loop to populate the identity_matrix by setting the diagonal
- !-:"*Elements to 1. The loop runs until row exceeds the value of n.

;_.’ « Finully, we print elements of the identity matrix (o the console.
Implicit Looping with apply()
* The apply function is used for applying a function to subsets of a data
structure, such as rows or columns of a matrix.

JSSCACS 2023-24 ROOPA

« It allows youto avoid writing explicit loops and can simplily your code.
Syntax: apply(X, MARGIN,

FUN)
where

X: The data structure (matrix, data-frame, orarray) to apply the function to, k}‘
MARGIN: Specities whether the function should be applied to rows (1) ore.
columns (2) of the data structure. FUN: The function to apply to each su&-:?;\x

Example: Program to illustrate usage ol apply function >

Create a sample matrix of exam scores scores_matrix <- mal:m?&lfﬁﬁ 70,
80, 90, 60, 70, 80, 90, 60, 70, 80, 90), nrow = 4)

Use apply to calculate the mean score for each slud&n{‘&g&foss exams)
mean_scores <- apply(scores_matrix, |, mean)

Print the mean scores cat("Mean ‘*-—
Scores:") : Q

rint(imean_scores) """‘
p >
Output: O

utput: N\
Mean Scores: 60 70 80 90 A

’\

Explanation of above pr
. scores_matrix lb mattix representing exam scores for four students
(rows) across three @ Ecnlmmh}

. We use the ﬁ\!p‘l} function with MARGIN = 1 to apply the mean function
to each row ,..:} ;

(i.e.. :ILT%!S‘;-/?CEH'I&} af the scores_matrix.

. The i stored in the mean_scores vector, which contains the mean score
fa\bﬂm student.
.\

A TWRITING FUNCTIONS

-y

e Function Creation

' * A function is a block of codeto perform a specific task.
* Function is defined using the “function’ keyword.
* This can take one or more arguments.

JSSCACS 2023-24 ROOPA

* This can also return values using the “return” statement.

* Function
O helps encapsulate code
O mmproves code readability and O allows (o reuse
code-segments.

Syntax: function_name <- function(argl, __"_1\}

Dves) NS
s K\
{ ‘:1':'-...\.‘
ft Function body _*’Q—-*
Perform some operations using argl, arg2, and other argume),
Optionally, return a result using "return’ statement ‘1_'“"-"

S

) N
Where o

“function_name : This is the nume of the tu:@.

“argl,arg2,...": These are the [unction-argiments.

“{ «..} :This is the bodyof the function. lQ:rn::lcn:;ta.tl in curly braces "{}". -
“return(...)": Optionally, vou can us return’ statement to return values

AN
Example: \:}
I v,

square <- function(x) | 4{\

result <- X * X return(resgll

result <- squ:ﬂ‘ﬁ\:{ # Call the function

ca:("'rmq"qgﬂ;e of §is:", result) Output:

Th&gﬁ?ﬁiﬁe of 5is5: 25

&

- w=Explanation of above program:

C_;\. s We define a function called “square’ that takes one argument "X,

-~ = Inside the function, we calculate the square of "X by multiplying it by itself
and store the result in the “result’ variable.

» We use the “return” statement to specify that the result should be returned
when the function is called.

JSSCACS 2023-24 ROOPA

* We call the “square” function with the argument *5 and store the result in the
“result” variable.
* Fmally, we prmt the result, which is "The square of 5 is: 25",

Function to print the Fibonacei sequence up to 150, 4
fibol <- function() { —-}"
fib_a <- 1 fib_b <- 1 Q,
cat(fib_a, ", ", fib_b.". ", sep="") g‘l

while (fib_b <= 150) { temp <- h::-

fib_a + fib_b fib_a <- fib_b fib_h A\

<-temp if (fib_b <= 150) { U’\

cat(fib_b, ", ", sep="") —-\
\ p ‘1_L‘"
} 5

]

fibol() # Call the function to print the F[hq‘?u\i’ci sequence up to 150

ne,
Output: >
L 1.2, 3. 5.8, 13, 21, 34, 55. 89/
N
Explanation of above program:

» We initialize tib_qh@}ﬂj_b to 1 and print the first two Fibonacci numbers.

* We use a while lopp/to continue generating and printing Fibonacci numbers as
long as fib_b s less than orequal to 150.

« Inside mflngﬁ. we calculate the next Fibonacci number, update fib_a and
fib_beaceordingly, and print the Fibonaccinumber if it's still less than or equal
tp\-I?Q * When you call fibol(), it will print the Fibonaccisequence up to 150,

S

{J‘\.!?Pnssing arguments
\:-—3 Example: Function to print area of circle

Circ.area Ofunction(r)

!
Area 0 pi*r'2
JSSCACS 2023-24 ROOPA

Cire.area(5)
Output: 78.539 '\.}‘
Explanation of above program: *-l\l*\ 4
* We are passmg radius as an argument to function \
» Inside the function calculating the area of circle, then returning the w,luE-B'icL

where the function has been called. ’1__r

Q:’

Using return L«._
* return is used to specify what value should be returned Q\fhc result of the

function
* This allows you to pass a value oran ﬂhjecth'lc{?ql\ﬁe calling code.
« If there's no "return’ statement inside a funcum'r'-
i) The function ends when the last hne m?_l’fe body code is executed.

ii) It returns the most recently As‘ngﬁﬁ"ur created object in the function. iii)
If nothing is created, the fuqo@“ u returns "NULL".

w
Example: add_numbers {-Q\’
function(x, v) =)
| ~O
result <- x +y reml‘n(-riesul[
| Y
Call ﬂﬁ/u:thun and store the resultin a variable sum_result
<~ add'f\ ers(3, 3)
Prinit the result cat("The sum
“h, sum_result, "\n") Output:
- ¢ [The sum is:8
LN)
¥,
Explanation of above program:
» We define a function called add_numbers that takes two arguments x and y.
« Inside the function, we calculate the sum of x and y and store it in the variable
result.

JSSCACS 2023-24 ROOPA

* We use the return statement to specily that the result should be returned as the
cutput of the function.

* When we call add_npumbers(5, 3). it calculates the sumol 5 and 3 and retums
the result, which is 8.

* We store the returned result m the variable sum_result and then print it t:_,\' :

-
Arguments O
Lazy Evaluation N>

* Lazy evaluation means expressions are evaluated only when needed. . >

= The evaluation of function-arguments s delerred until they are u;‘i@?
needed. » The arguments are not evaluated immediately whm@hcﬁon is
called but are evaluated when they are accessed within t tion.

" I & ..1‘ B
» This can help optimize performance and save computafignal resources.

* Example:

lazy _example <- function(a, b) ﬁ
| -
cat("Inside the function\n") cat("a=", A ¥

i I”'l,ﬂ"}ﬂﬂ.tl:”h — 1 b Irmlhj k_,

cat("Performing some operations h)
result <-a +b \

cat("Operations cnmpletew
retwrn{result) ,\ -

)
Create two vag;?&':‘f

x<-10y -:—

Call ﬂyctmn with the variables

lElZ)f le(x. v)

a\ltpul.

"\ Inside the function
-""'"’ a=10b=20

: Performing some operations... Operations
completed
[1] 30

JSSCACS 2023-24 ROOPA

Explanation of above program:

» When we cull lazy_example(x. y). we are passing the variables x and y as
arguments to the function.

* [nitially, the function prints "Inside the function” and then proceeds to print "a

10" and "b=20". This indicates that the values of a and b are evaluated at this
poml. :\JL\"
* Next, the function prints "Performing some operations...” and calculates rest
as a A
N
L
+ b, L '
* However, it does notevaluate the actual values of x and y (i.e.,\10wnd 20)
immediately. Instead, it holds off on the computation uﬂtililli-é_}esult is needed.
* Finally, the function prints "Operations completed” and{l’;&‘hms the resull,
which Q"‘
18 Q

30, i

%,

el

Setting Defaults (7

*You Cdl'l provide predefined va]u{q{ﬁgfsnme or all of the arguments in a
function. -{’\

= Useful for providing a def: ehavior if user doesn't specify a value for
arguments. -.

* Syntax: ”‘\H\

function_name <- @ellﬁn(arg] = defaull_valuel, arg2 = default_value2, ...) |{

Function body,

ft Use arg --.‘zu‘hg?l and other arguments

I \\

&‘argr, etc.: These are the function-arguments for which you want to

- “I@at defaull values.

i

¥
. . ol

“default_valuel’, defaull_value2’, ete.: These are the values vou assign as
defaults for the respective arguments.

« Example: Function to calculate the area of a rectangle
calculate_rectangle_area <- function(width =2, height = 3) | area <- width *
height return(area)

JSSCACS 2023-24 ROOPA

Call the function without specilying width and height

default_arca <- calculate_rectangle_arca() # Call the function

with custom width and height custom_area <-

calculate_rectangle_area(width =5, height =4) cat("Default N
Area:", default_area, "\n") L“

———
',

cat("Custom Area:". custom_area, "\n") A
)\
Output: .,.::?x !
Default Area:6 *1::‘?
Custom Area:20 Q.,\
LO
Explanation of above program: -.\.

* We define a function “calculate_rectangle_area rhmﬂ\ fwo arguments,
“width™ and “height”, with default values of 2 andﬂ.\kspecﬁvaly.

« Inside the function, we calculate the area of ¢ .uec\ﬂngk usiig the provided or
default values. ‘:--.,

* When we call ca]culﬂte__rﬂctang}e_m:e{f'}; ﬁ*itlmut specifying “width™ and
“height’, the function uses the defauit-values (2 and 3) and retums the default
area of 6, which 15 stored n lh,a’!.&n‘ ble “default_area’.

* When we call "calculate_ree] g _area(width = 5, height =4) with custom
values, the function uses thése values and returns the calculated area of 20,
which R:H‘

is stored n the vm@kg

“custom_area’.

Cheu:l;iﬂg&ﬁn Missing Arguments

* migsing() is used to check if an argument was provided when calling a

“tion.
““-q.[t retums

\ "TRUE' if the argument is missing (not provided) and "FALSE
\...-n)
- if the argument is provided.

« Syntax: missing(argument_name)
Where
“argument_name": This is the name of the argument you want to check

JSSCACS 2023-24 ROOPA

« Example: Function to check if an argument 18 missing check_argument <-
function(x) | if (mossing(x)) |

cat("The argument 'x"is missing.\n")

| else §

cat("The argument 'x'is provided with a value of”, x, "\n") }

O

l —
',

Call the function without providing 'x' --h’\l*\-\
check _argument() f\,

Call the function with 'y’ >
check_argument(42) - Q" IT

Output: ‘1_

The argument ‘x" 18 missing \

The argument 'x"is provided with a value of 42 E ‘;J\lé}ﬁ,lﬁun

of above program: \

» We define a function called “check_argu At that takes one argument, "

» Inside the function. we use the “missing’ function to check if the argumenl e
is missing (not provided). If it is mL@&ill’g?we print a message indicating that it
is missing. Otherwise, we print Julue of X

* When we call "check_argur ‘;l{} without providing "x°, the function uses
‘missing” to check if "x" jsynissing and prints "The argument X' is missing.”

» When we call "check m‘u ent(42)" with a value of 42 for “x", the function
uses ‘missing’ 1o ch that *x" is provided with a value and prints "The
argument 'x’ iﬁ:'r’hvﬂed with a value of42."

P e

Dealing i Ellipses

. E]]Jp*.“!\ Ws passing extra arguments w/o predefining them in the
aﬁ’ﬁemlm

\vamally ellipses are placed in the last position of a function-definition.

\ » Example: Function to generate and plot Fibonaccisequence up to 150).
“"':" myfibplot <- function(thresh, plotit = TRUE, ...){
: fibseq <- c(l, 1) counter <-2
while (fibseq[counter] <= thresh) |

JSSCACS 2023-24 ROOPA

fibseq <- c(fibseq, fibseg[counter - 1] + libseq|counter])
counter <- counter + 1 if (fibseq[counter] > thresh) |
break)

1 if (plotat)

{ ol .
plot(1:dength(fibseq), fibseq, ...) x‘!\..}
| else { return(fibseq) .

| NS

i "

Explanation of above program: S
. We use a while loop to generate Fibonacci numbers %&d them to the
: fibseq vector until the condition fibsey|counter] <= lllre:g: o longer met.

. We check the condition fibseq[counter] > IhresQ__' in the loop, and if
it's true, we break out of the loop. Q
~ ;
a:l-_"..
i
3
I,
A'k ole o = & @ .
k—/ ¥ . i ' " -;
| A2 - |
Figure 11-1: Thedefaul plot produced by a call to myfibplot, with thresh=150
AN

Specialized Functions

W‘ Functions

: ..,:; ese functions are designed to assist another function in performing
_J\ L computations

7+ They enhance the readubility of complex functions.

' * They can be either defined internally or externally.

Externally Defined Helper Functions
* These functions are defined in external libraries or modules.

JSSCACS 2023-24 ROOPA

. . ol

* They can be used in your code w/o defining them within your program. * They
are typically provided by programming language or third-party libraries

= They provide commonly used functionalitics.

» Example: Extermnally defined helper function *mean’ is used to find mean of §

nos. values <-¢(10, 20, 30, 40, 50) average <- mean(values) {}

cat("The average is:", average, "\n") .-.._ '
N
o~
Output: h:\
The average is: 30 >
3

Explanation of above program:

* We use the “'mean” function, which is an externally dehn?ﬁelper function
provided by the R programming language.
» mean() calculates the average of the numeric va]ue.‘rq‘ he “values™ vector.
» We store the result in the “average™ variable al}?{[ﬁ'bn print if.
——

Internally Defined Helper Functions .\

= These functions are also known as m&-&?af’med functions.

* They are defined by pmgrmmgf According to their requirement.

* They are used to perform a u{iur > Lask or operation,

» They enhance code org n, reusability, and readability.
« Example: Internally defined helper function to calculate the square of a
number square {11‘11 ion(x) { result <- x # x return{result)

} num <- 5 squared _num <-
square(num) T
cat(" Th e of", num, "is:", squared_num, "\n")

AN

_ n,:é%e square of 5 is: 25
_" H'Iil lanation of above program:
N, "Exp progra
'\.-l"":,

* We defne an internally defined helper function called “square’. This function
cilculates the square of a number "X

* Inside the function, we perform the calculation and store the result in the
“resull” variable.

JSSCACS 2023-24 ROOPA

A

e,

* We use the “return” statement to specity that the “result” should be returned as
the output of the function.

= We then call the “square” function with a value of °5" and store the result in the
squared_num’ variable. « Fmally, we prmt the squared value using the “cat’
function.

O
Disposable Functions ,Q:\
= These functions are created and used for a specific, one-time task. «,:"5‘
* They are not intended for reuse or long-term use. ,,:':"

*» They are often employed to perform a single, temporary upe-ratiqﬂf%_";

= They are discarded after use. : L}

* Example: A disposable function to calculate the area of g\-?g;ngle once
calculate_rectangle_area <- function(length, width) {l

| 9

area <- length = width Q

cat("The area of the rectangle is:", area, "\n") T':"‘

Use the disposable function to calculate the area of a specific rectangle

calculate_rectangle_area(5. 3) Outpm \.j'

The area of the rectangle is: 15 A

Explanation of above program:

* We define a function ¢ ﬂQcaiCuIate_rectangie_area‘ that calculates the area
of a rectangle based omrits length and width.

« We use this functiofhonce to calculate the area of a specific rectangle with a

length of 5 units ind'a width of 3 units.
oY

v,
Advnntq%}gn'f Disposable Functions
« ConvVeniént for simple. one-off tasks.
-Au@s cluttering the global environment with unnecessary function objects.

v Provides a concise way to define and use functions inline.

Recursive Functions

* These functions call themselves within their own definition,
* They solve problems by breaking them down into smaller, similar
subproblems.

= They consist of two parts: a base case and a recursive case.

JSSCACS 2023-24 ROOPA

* The base case defines the condition under which the recursion stops.
The recursive case defines how the problemis divided into smaller subproblems
and solved recursively,

* Example: Recursive [unction to calculate the nth Fibonacci number myfibrec

<-function(n) { f(n=1|n=2){ At
return(1) # Base cases: Fibonacci of 1st and 2nd numbers are both | ““}""' :
| else { n-...l\}T :
return(myfibrec(n - 1) + myfibrec(n - 2)) # Recursive case | ’:\»
| >
Example: Calculate the 5th Fibonacei number L{}kj
n <- 5 result <- myfibrec(n) L}

cat("The", n, "th Fibonacci number is:", result, "\n") "I_O

Output: ‘Q_

The 5th Fibonacci number is: 4 &Q
oy "
Explanation of above program: ~ X

. We handle the base cases where\llt..ls 1 or 2, returning 1 because the first
two Fibonacei numbers are both \x

. In the recursive case, for n greater than 2, we caleulate the nth Fibonacei
number by adding the (n-1 \'lﬂ (n-2)nd Fibonacer numbers. We do this by

calling the myfibrec I recursively with n - 1 and n - 2 as arguments. «
Finally, we call lhe th rec function with n =5 and print the result.
m'rflhmc{.'n}
myﬁh:ec{#} lnyf |bm{3}

¢ /K’(I\., fr)/ | \

: \ \
\
rg R / \

myfibrec{i) - myfibrec(2) myfibrec(2) =« myfibrec{i)
SN
x A
myfibrec(2) + myfibrec(1)

JSSCACS 2023-24 ROOPA

Exception
When there’s an unexpected problem during execution of a function, R will
notify you with either a waming or an error,

In R. vou can issue warnings with the warning command, and you can throw
errors with the stop command Example for warning command:

O

warm._test <- function(x){ f(x<=0)(—

oy

N
=~

warmning("'x' is less than or equal to 0 but setting it to 1 and
continuing”) x <- 1 | retum(5/x)

T
) o
QL

warn_test(0) Output: S,
5 O

o g
Warning message: {:\'
In warn_test(0) : Q—-
'x' 18 less than or equal to O but setting it to | mQ@ﬂnuing

e,

Explanation: ?"' '

In warn_test, if x is nonpositive, lhé.,ﬁlucmn issues a waming, and x is

overwritten to be 1. wam_ test hﬂh,ﬁqE‘IUnuEd to execute and returned the value 5
g?\

Example for stop co ' \’

eITor_test <- ﬁsmﬂuﬂ{lﬂmf::{]}{ stop("'x'is less

than or equal to 0... TERMINATE")

| return(5/x) -

) €rmor_test(Op :

(}ut]mt

E’.rror-ﬂ\;ﬁ'or test(0) : "x" is less than or equal 1o 0... TERMINATE

@nh:
o nation

"I error_test, on the other hand, if x is nonpositive, the function throws an error
= and terminates immediately.

The call o error_test did nol return anything because R exited the function at
the stop command.

Catching Errors with try Statements

JSSCACS 2023-24 ROOPA

When a function terminates from an error, it also terminates any parent functions.
For example, if function A calls function B and function B halts because of un
error, this halts execution of A al the same pomt. To avoid

this severe consequence, you can use a fry statement to attempt a function call

and check whether it produces an error., -

P . }.__} |
Example: q\ﬁr
v<-¢(1,2,4.°0",5) for *‘a-:\'
(1in v) .
[Q-
try(print(5/1)) .
) QO

§
N

Output: ‘Q_
: L)
2.5 —
1.25 o I
Error in 5/1 : non numeric arg_l.[t‘_f_hgién.lj[n binary operator

1 S

Explanation: \?
In the example given abov ave code which has non-numeric value in the
vector and we are Lryi wdivide 5 with every element of the vector.
Using the try block: see the code ran for all the other cases even after the
error in one of the freration.

R
Using | tch

Theflr?r\h ck prevents your code from stopping but cannot provide a way ©
¢’ exceptions. Trycatch helps to handle the conditions and control what

?%ppens based on the conditions.
: check = tryCateh((
expression

], warning = function(w)|

JSSCACS 2023-24 ROOPA

ENEEESWUEIE NSt sl D w e DU TS R WUEd U WD Ny eSS E WSRO0 D0 E S DD

code that handles the warnings
|, error = [unction(e)| code
that handles the errors |, finally
=function(f){ clean-up code

b -

-
Example: check <- §

function(expression)| \\
withCallingHand lers(expression, v
&

wa_mjng = function{w){ O
message(“warning:in", w) QQ-

:) Q&

; error = function(e){ Q

: message("errorin”, e) -e

] s

H finally = { b,

: mezssaget"ﬂumpleted'w\%

$ 1) -
) S

Q
check({10/2}) c.lwckf@ﬁ

check({ 10/'noe’})

: (,\\"?
>

JSSCACS 2023-24 ROOPA

FEESTETE RSN EWUE e ST I TS DN T e N WWEEWESWOD T W EE SO EST0D0wE S

Completed

5

Completed

Irnf s .I
Y

Completed ?}hﬂ'

error: ﬁ\; :

Error in 10/"noe”: non-numeric argument to binary operator ,:&\ :

Error in 18/"nge”: non-numeric argument to binary operator b
Traceback:

1. checki{
19/ "npoe™
H

2. withCallingHandlersi{expression, warning = function{w) {
. message(“warning:\n"*, w)
. ¥, Error = functionfe) {
) message(“error:\n~, &)
. }. finally = {
’ message{ “Completed”)
.} # at line B-16 of file <texts

L i

&,

Timing —
it"s often useful to keep track of #}ess orsee how long a certain task took to
complete. A
If you want to know huw-a computation takes to complete, you can use the
Sys.time command. -~
This command nut{_/ object that details current date and time information
based on vour s{s‘..}em

T

"L.lﬁ.

Svs.u
(8 5"2016-03-06 16:39:27 NZDT"

r\‘r'
Y% Sys.sleep command makes R pause for a specilied amount of time, in
:.& seconds. before continuing.

s ¥

Syntax:

Starttime 0 Sys.time()
{

Func()

JSSCACS 2023-24 ROOPA

A
5

JSSCACS

I
Endtime O Sys.time()

Example:

Sleep_func O function()
I S
Sys.sleep(5) D

| N

Starttime O Sys.time()

l S
Sleep_func()
] ‘3(\1'

Endtume 0 Sys.tume() Print(Endtime-Starttime) Q_
L

Output: =

5.008 sec ::*
Explanation: A\
Store/Record the time before the gxégbtion in the variable Starttime, then after
the execution of the function, staréthe time in Endtime variable,
The ditference between and Starttime gives the running time of the

function. -
O
Visibility qu)\g/rg:fs Bar
o h'-"'r

The]uca{?ﬁh&m we can find a variable and also access it if required is called
the sc.ﬂi*gs f a variable. There are mainly two types of variable scopes:

AP
G"\JBBI Variables: As the name suggests, Glohal Variables can be accessed
“Trom any part of the program,

* They are available throughout the hifetime of a program.
* They are declared anywhere in the program outside all of the functions or
blocks.
2023-24 ROOPA

* Declaring global variables: Global variables are usually declared outside
of all of the functions and blocks. They can be accessed [rom any portion
of the program.

E 3 £s

xample ' x\kﬁ :
global variable :
global = 5 ~

global varable accessed from H\,
within a function display _..“‘Q_"

= function() k)

| § B
print(global) Q\

| display() &

changing value of global vanable global ,\:_'x

=10 /
display() ‘_\.‘U
Output: ﬁQA\
5 N
10 D
nNe

Local Vnrinhlg;‘&'ﬂﬁahles defined within a function or block are said (o be
local to thosefuretions.

- X
A
_““Local variables do not exist outside the block in which they are declared,
{f\'\:q.-ﬂ. they can not be accessed or used outside that block. = Declaring.
: \\ local variables: Local variables are declared inside a block.
g..:, Example:
: func = function()
{
this variable is local to the

JSSCACS 2023-24 ROOPA

LSRG EARSS e RS NS P WSl E RSP e D el S TE S EWVESWEWO RSSO E DWW RSO DRUOYWVYENSEEeWe DD

: # function func() and cannot be
accessed outside this function
age = 18 print(age)

}

cal("Age is:\n") Y\‘ :
N3
func() @@ :
Output: Q_Yv
O

Age is :18

L T A R=-T 1 T Ay W= O R AN A T

[T T - -y

2
5
\/Ew
7
G

uuu

