
Unit-2  

Data Link Layer: 

o In the OSI model, the data link layer is a 4th layer from the top and 2nd layer from the bottom. 

o The communication channel that connects the adjacent nodes is known as links and in order to 

move the datagram from source to the destination, the datagram must be moved across an 

individual link. 

o The main responsibility of the Data Link Layer is to transfer the datagram across an individual 

link. 

o The Data link layer protocol defines the format of the packet exchanged across the nodes as well 

as the actions such as Error detection, retransmission, flow control and random access. 

o The Data Link Layer protocols are Ethernet, token ring, FDDI and PPP. 

o An important characteristic of a Data Link Layer is that datagram can be handled by different 

link layer protocols on different links in a path. For example, the datagram is handled by Ethernet 

on the first link, PPP on the second link. 

Following services are provided by the Data Link Layer: 

 

o Framing & Link access: Data Link Layer protocols encapsulate each network frame within a 

Link layer frame before the transmission across the link. A frame consists of a data field in which 

network layer datagram is inserted and a number of data fields. It specifies the structure of the 

frame as well as a channel access protocol by which frame is to be transmitted over the link. 

o Reliable delivery: Data Link Layer provides a reliable delivery service, i.e., transmits the 

network layer datagram without any error. A reliable delivery service is accomplished with 

transmissions and acknowledgements. A data link layer mainly provides the reliable delivery 

service over the links as they have higher error rates and they can be corrected locally, link at 

which an error occurs rather than forcing to retransmit the data. 



o Flow control: A receiving node can receive the frames at a faster rate than it can process the 

frame. Without flow control, the receiver's buffer can overflow, and frames can get lost. To 

overcome this problem, the data link layer uses the flow control to prevent the sending node on 

one side of the link from overwhelming the receiving node on another side of the link. 

o Error detection: Errors can be introduced by signal attenuation and noise. Data Link Layer 

protocol provides a mechanism to detect one or more errors. This is achieved by adding error 

detection bits in the frame and then receiving node can perform an error check. 

o Error correction: Error correction is similar to the Error detection, except that receiving node 

not only detects the errors but also determine where the errors have occurred in the frame. 

o Half-Duplex & Full-Duplex: In a Full-Duplex mode, both the nodes can transmit the data at 

the same time. In a Half-Duplex mode, only one node can transmit the data at the same time. 

Data link layer design issues: 

Design issues with data link layer are:   

1. Services provided to the network layer:  

The data link layer act as a service interface to the network layer. The principle service is 

transferring data from network layer on sending machine to the network layer on destination 

machine. This transfer also takes place via DLL (Data link-layer).  

2. Frame synchronization:  

The source machine sends data in the form of blocks called frames to the destination 

machine. The starting and ending of each frame should be identified so that the frame can be 

recognized by the destination machine.   

3. Flow control:  

Flow control is done to prevent the flow of data frame at the receiver end. The source 

machine must not send data frames at a rate faster than the capacity of destination machine to 

accept them.  

4. Error control:  

Error control is done to prevent duplication of frames. The errors introduced during 

transmission from source to destination machines must be detected and corrected at the 

destination machine.  

Error Detection: 

When data is transmitted from one device to another device, the system does not guarantee whether the 

data received by the device is identical to the data transmitted by another device. An Error is a situation 

when the message received at the receiver end is not identical to the message transmitted. 

https://www.geeksforgeeks.org/design-issues-in-network-layer/
https://www.geeksforgeeks.org/framing-in-data-link-layer/


Types of Errors: 

 

Errors can be classified into two categories: 

1. Single-Bit Error 

2. Burst Error 

Single-Bit Error: 

The only one bit of a given data unit is changed from 1 to 0 or from 0 to 1. 

 

In the above figure, the message which is sent is corrupted as single-bit, i.e., 0 bit is changed to 1. 

Single-Bit Error does not appear more likely in Serial Data Transmission. For example, Sender sends 

the data at 10 Mbps, this means that the bit lasts only for 1’s and for a single-bit error to occurred, a 

noise must be more than 1’s. 

Single-Bit Error mainly occurs in Parallel Data Transmission. For example, if eight wires are used to 

send the eight bits of a byte, if one of the wire is noisy, then single-bit is corrupted per byte. 

Burst Error: 

The two or more bits are changed from 0 to 1 or from 1 to 0 is known as Burst Error. 

The Burst Error is determined from the first corrupted bit to the last corrupted bit. 

 

The duration of noise in Burst Error is more than the duration of noise in Single-Bit. 

Burst Errors are most likely to occur in Serial Data Transmission. 



Error Detecting Techniques: 

The most popular Error Detecting Techniques are: 

1. Single parity check 

2. Two-dimensional parity check 

3. Checksum 

4. Cyclic redundancy check 

Single Parity Check: 

➢ Single Parity checking is the simple mechanism and inexpensive to detect the errors. 

➢ In this technique, a redundant bit is also known as a parity bit which is appended at the end of 

the data unit so that the number of 1s becomes even. Therefore, the total number of transmitted 

bits would be 9 bits. 

➢ If the number of 1s bits is odd, then parity bit 1 is appended and if the number of 1s bits is even, 

then parity bit 0 is appended at the end of the data unit. 

➢ At the receiving end, the parity bit is calculated from the received data bits and compared with 

the received parity bit. 

➢ This technique generates the total number of 1s even, so it is known as even-parity checking. 

 

Drawbacks of Single Parity Checking: 

✓ It can only detect single-bit errors which are very rare. 

✓ If two bits are interchanged, then it cannot detect the errors. 

 



Two-Dimensional Parity Check: 

▪ Performance can be improved by using Two-Dimensional Parity Check which organizes the data 

in the form of a table. 

▪ Parity check bits are computed for each row, which is equivalent to the single-parity check. 

▪ In Two-Dimensional Parity check, a block of bits is divided into rows, and the redundant row of 

bits is added to the whole block. 

▪ At the receiving end, the parity bits are compared with the parity bits computed from the received 

data. 

 

Drawbacks of 2D Parity Check: 

❖ If two bits in one data unit are corrupted and two bits exactly the same position in another data 

unit is also corrupted, then 2D Parity checker will not be able to detect the error. 

❖ This technique cannot be used to detect the 4-bit errors or more in some cases. 

Checksum: 

A Checksum is an error detection technique based on the concept of redundancy. 

It is divided into two parts: 

Checksum Generator: 

A Checksum is generated at the sending side. Checksum generator subdivides the data into equal 

segments of n bits each, and all these segments are added together by using one's complement arithmetic. 

The sum is complemented and appended to the original data, known as checksum field.  

 

The extended data is transmitted across the network. 

Suppose L is the total sum of the data segments, then the checksum would be L. 



 

The Sender follows the given steps:   

1.   The block unit is divided into k sections, and each of n bits.   

2.   All the k sections are added together by using one's complement to get the sum.   

3.   The sum is complemented and it becomes the checksum field.   

4.   The original data and checksum field are sent across the network.   

Checksum Checker: 

A Checksum is verified at the receiving side. The receiver subdivides the incoming data into equal 

segments of n bits each, and all these segments are added together, and then this sum is complemented. 

If the complement of the sum is zero, then the data is accepted otherwise data is rejected. 

The Receiver follows the given steps:   

1.   The block unit is divided into k sections and each of n bits.   

2.   All the k sections are added together by using one's complement algorithm to get the sum.  

3.   The sum is complemented.   

4.   If the result of the sum is zero, then the data is accepted otherwise the data is discarded.   

Cyclic Redundancy Check (CRC): 

CRC is a redundancy error technique used to determine the error. 

Following are the steps used in CRC for error detection: 

o In CRC technique, a string of n 0s is appended to the data unit, and this n number is less than the 

number of bits in a predetermined number, known as division which is n+1 bits. 

o Secondly, the newly extended data is divided by a divisor using a process is known as binary 

division. The remainder generated from this division is known as CRC remainder. 

o Thirdly, the CRC remainder replaces the appended 0s at the end of the original data. This newly 

generated unit is sent to the receiver. 



o The receiver receives the data followed by the CRC remainder. The receiver will treat this whole 

unit as a single unit, and it is divided by the same divisor that was used to find the CRC 

remainder. 

If the resultant of this division is zero which means that it has no error and the data is accepted. 

If the resultant of this division is not zero which means that the data consists of an error. Therefore, the 

data is discarded. 

 

Let's understand this concept through an example: 

Suppose the original data is 11100 and divisor is 1001. 

CRC Generator: 

 A CRC generator uses a modulo-2 division. Firstly, three zeroes are appended at the end of the 

data as the length of the divisor is 4 and we know that the length of the string 0s to be appended 

is always one less than the length of the divisor. 

 Now, the string becomes 11100000, and the resultant string is divided by the divisor 1001. 

 The remainder generated from the binary division is known as CRC remainder. The generated 

value of the CRC remainder is 111. 

 CRC remainder replaces the appended string of 0s at the end of the data unit, and the final string 

would be 11100111 which is sent across the network. 

 



CRC Checker: 

➢ The functionality of the CRC checker is similar to the CRC generator. 

➢ When the string 11100111 is received at the receiving end, then CRC checker performs the 

modulo-2 division. 

➢ A string is divided by the same divisor, i.e., 1001. 

➢ In this case, CRC checker generates the remainder of zero. Therefore, the data is accepted. 

 

Error Correction: 

Error Correction codes are used to detect and correct the errors when data is transmitted from the sender 

to the receiver. 

Error Correction can be handled in two ways: 

1. Backward error correction: Once the error is discovered, the receiver requests the sender to 

retransmit the entire data unit. 

2. Forward error correction: In this case, the receiver uses the error-correcting code which 

automatically corrects the errors. 

A single additional bit can detect the error, but cannot correct it. 

For correcting the errors, one has to know the exact position of the error. For example, if we want to 

calculate a single-bit error, the error correction code will determine which one of seven bits is in error. 

To achieve this, we have to add some additional redundant bits. 

Suppose r is the number of redundant bits and d is the total number of the data bits. The number of 

redundant bits r can be calculated by using the formula: 

2r>=d+r+1 

The value of r is calculated by using the above formula. For example, if the value of d is 4, then the 

possible smallest value that satisfies the above relation would be 3. 



To determine the position of the bit which is in error, a technique developed by R.W Hamming is 

Hamming code which can be applied to any length of the data unit and uses the relationship between 

data units and redundant units. 

Hamming Code: 

Parity bits: The bit which is appended to the original data of binary bits so that the total number of 1s is 

even or odd. 

Even parity: To check for even parity, if the total number of 1s is even, then the value of the parity bit 

is 0. If the total number of 1s occurrences is odd, then the value of the parity bit is 1. 

Odd Parity: To check for odd parity, if the total number of 1s is even, then the value of parity bit is 1. If 

the total number of 1s is odd, then the value of parity bit is 0. 

Algorithm of Hamming code: 

o An information of 'd' bits are added to the redundant bits 'r' to form d+r. 

o The location of each of the (d+r) digits is assigned a decimal value. 

o The 'r' bits are placed in the positions 1,2,.....2k-1. 

o At the receiving end, the parity bits are recalculated. The decimal value of the parity bits 

determines the position of an error. 

Relationship b/w Error position & binary number: 

 

Let's understand the concept of Hamming code through an example: 

Suppose the original data is 1010 which is to be sent. 

Total number of data bits 'd' = 4 

Number of redundant bits r : 2r >= d+r+1 

                           2r>= 4+r+1 

Therefore, the value of r is 3 that satisfies the above relation. 

Total number of bits = d+r = 4+3 = 7; 

Determining the position of the redundant bits: 

The number of redundant bits is 3. The three bits are represented by r1, r2, r4. The position of the 

redundant bits is calculated with corresponds to the raised power of 2. Therefore, their corresponding 

positions are 1, 21, 22. 



1. The position of r1 = 1   

2. The position of r2 = 2   

3. The position of r4 = 4   

Representation of Data on the addition of parity bits: 

 

Determining the Parity bits: 

Determining the r1 bit: 

The r1 bit is calculated by performing a parity check on the bit positions whose binary representation 

includes 1 in the first position. 

 

We observe from the above figure that the bit positions that include 1 in the first position are 1, 3, 5, 7. 

Now, we perform the even-parity check at these bit positions. The total number of 1 at these bit positions 

corresponding to r1 is even, therefore, the value of the r1 bit is 0. 

Determining r2 bit: 

The r2 bit is calculated by performing a parity check on the bit positions whose binary representation 

includes 1 in the second position. 

 

We observe from the above figure that the bit positions that includes 1 in the second position are 2, 3, 

6, 7. Now, we perform the even-parity check at these bit positions. The total number of 1 at these bit 

positions corresponding to r2 is odd, therefore, the value of the r2 bit is 1. 

Determining r4 bit: 

The r4 bit is calculated by performing a parity check on the bit positions whose binary representation 

includes 1 in the third position. 



 

We observe from the above figure that the bit positions that includes 1 in the third position are 4, 5, 6, 

7. Now, we perform the even-parity check at these bit positions. The total number of 1 at these bit 

positions corresponding to r4 is even, therefore, the value of the r4 bit is 0. 

Data transferred is given below: 

 

Elementary Data Link protocols: 

Elementary Data Link protocols are classified into three categories, as given below − 

• Protocol 1 − Unrestricted simplex protocol 

• Protocol 2 − Simplex stop and wait protocol 

• Protocol 3 − Simplex protocol for noisy channels. 

Let us discuss each protocol one by one. 

Unrestricted Simplex Protocol: 

Data transmitting is carried out in one direction only. The transmission (Tx) and receiving (Rx) are 

always ready and the processing time can be ignored. In this protocol, infinite buffer space is available, 

and no errors are occurring that is no damage frames and no lost frames. 

The Unrestricted Simplex Protocol is diagrammatically represented as follows − 

 



Simplex Stop and Wait protocol: 

In this protocol we assume that data is transmitted in one direction only. No error occurs; the receiver 

can only process the received information at finite rate. These assumptions imply that the transmitter 

cannot send frames at rate faster than the receiver can process them. 

The main problem here is how to prevent the sender from flooding the receiver. The general solution 

for this problem is to have the receiver send some sort of feedback to sender, the process is as follows: 

Step1 − The receiver send the acknowledgement frame back to the sender telling the sender that the last 

received frame has been processed and passed to the host. 

Step 2 − Permission to send the next frame is granted. 

Step 3 −The sender after sending the sent frame has to wait for an acknowledge frame from the receiver 

before sending another frame. 

This protocol is called Simplex Stop and wait protocol, the sender sends one frame and waits for 

feedback from the receiver. When the ACK arrives, the sender sends the next frame. 

The Simplex Stop and Wait Protocol is diagrammatically represented as follows: 

 

Simplex Protocol for Noisy Channel: 

Data transfer is only in one direction, consider separate sender and receiver, finite processing capacity 

and speed at the receiver, since it is a noisy channel, errors in data frames or acknowledgement frames 

are expected. Every frame has a unique sequence number. 

After a frame has been transmitted, the timer is started for a finite time. Before the timer expires, if the 

acknowledgement is not received , the frame gets retransmitted, when the acknowledgement gets 

corrupted or sent data frames gets damaged, how long the sender should wait to transmit the next frame 

is infinite. 

The Simplex Protocol for Noisy Channel is diagrammatically represented as follows − 



 

Sliding Window Protocol: 

The sliding window is a technique for sending multiple frames at a time. It controls the data packets 

between the two devices where reliable and gradual delivery of data frames is needed. It is also used 

in TCP (Transmission Control Protocol). 

In this technique, each frame has sent from the sequence number. The sequence numbers are used to 

find the missing data in the receiver end. The purpose of the sliding window technique is to avoid 

duplicate data, so it uses the sequence number. 

Types of Sliding Window Protocol: 

Sliding window protocol has two types: 

1. Go-Back-N ARQ 

2. Selective Repeat ARQ 

Go-Back-N ARQ: 

Go-Back-N ARQ protocol is also known as Go-Back-N Automatic Repeat Request. It is a data link layer 

protocol that uses a sliding window method. In this, if any frame is corrupted or lost, all subsequent 

frames have to be sent again. 

The size of the sender window is N in this protocol. For example, Go-Back-8, the size of the sender 

window, will be 8. The receiver window size is always 1. 

If the receiver receives a corrupted frame, it cancels it. The receiver does not accept a corrupted frame. 

When the timer expires, the sender sends the correct frame again. The design of the Go-Back-N ARQ 

protocol is shown below. 

The example of Go-Back-N ARQ is shown below in the figure. 

https://www.javatpoint.com/tcp


 

Selective Repeat ARQ: 

Selective Repeat ARQ is also known as the Selective Repeat Automatic Repeat Request. It is a data link 

layer protocol that uses a sliding window method. The Go-back-N ARQ protocol works well if it has 

fewer errors. But if there is a lot of error in the frame, lots of bandwidth loss in sending the frames again. 

So, we use the Selective Repeat ARQ protocol. In this protocol, the size of the sender window is always 

equal to the size of the receiver window. The size of the sliding window is always greater than 1. 

If the receiver receives a corrupt frame, it does not directly discard it. It sends a negative 

acknowledgment to the sender. The sender sends that frame again as soon as on the receiving negative 

acknowledgment. There is no waiting for any time-out to send that frame. The design of the Selective 

Repeat ARQ protocol is shown below. 

The example of the Selective Repeat ARQ protocol is shown below in the figure. 

 



Difference between the Go-Back-N ARQ and Selective Repeat ARQ: 

Go-Back-N ARQ Selective Repeat ARQ 

If a frame is corrupted or lost in it, all 

subsequent frames have to be sent again. 

In this, only the frame is sent again, which is 

corrupted or lost. 

If it has a high error rate, it wastes a lot of 

bandwidth. 

There is a loss of low bandwidth. 

It is less complex. It is more complex because it has to do sorting and 

searching as well. And it also requires more 

storage. 

It does not require sorting. In this, sorting is done to get the frames in the 

correct order. 

It does not require searching. The search operation is performed in it. 

It is used more. It is used less because it is more complex. 

 

 

Network Layer: 

✓ The Network Layer is the third layer of the OSI model. 

✓ It handles the service requests from the transport layer and further forwards the service request 

to the data link layer. 

✓ The network layer translates the logical addresses into physical addresses 

✓ It determines the route from the source to the destination and also manages the traffic problems 

such as switching, routing and controls the congestion of data packets. 

✓ The main role of the network layer is to move the packets from sending host to the receiving 

host. 

The main functions performed by the network layer are: 

o Routing: When a packet reaches the router's input link, the router will move the packets to the 

router's output link. For example, a packet from S1 to R1 must be forwarded to the next router 

on the path to S2. 

o Logical Addressing: The data link layer implements the physical addressing and network layer 

implements the logical addressing. Logical addressing is also used to distinguish between source 

and destination system. The network layer adds a header to the packet which includes the logical 

addresses of both the sender and the receiver. 

o Internetworking: This is the main role of the network layer that it provides the logical 

connection between different types of networks. 

o Fragmentation: The fragmentation is a process of breaking the packets into the smallest 

individual data units that travel through different networks. 



Services Provided by the Network Layer: 

❖ Guaranteed delivery: This layer provides the service which guarantees that the packet will 

arrive at its destination. 

❖ Guaranteed delivery with bounded delay: This service guarantees that the packet will be 

delivered within a specified host-to-host delay bound. 

❖ In-Order packets: This service ensures that the packet arrives at the destination in the order in 

which they are sent. 

❖ Guaranteed max jitter: This service ensures that the amount of time taken between two 

successive transmissions at the sender is equal to the time between their receipt at the destination. 

❖ Security services: The network layer provides security by using a session key between the 

source and destination host. The network layer in the source host encrypts the payloads of 

datagrams being sent to the destination host. The network layer in the destination host would 

then decrypt the payload. In such a way, the network layer maintains the data integrity and source 

authentication services. 

Network Layer Design:  

Network layer is majorly focused on getting packets from the source to the destination, routing error 

handling and congestion control. 

Before learning about design issues in the network layer, let’s learn about it’s various functions.  

1. Addressing:  

Maintains the address at the frame header of both source and destination and performs 

addressing to detect various devices in network. 

2. Packeting:  

This is performed by Internet Protocol. The network layer converts the packets from its upper 

layer. 

3. Routing:  

It is the most important functionality. The network layer chooses the most relevant and best 

path for the data transmission from source to destination. 

4. Inter-networking:  

It works to deliver a logical connection across multiple devices. 

Network layer design issues:  

The network layer comes with some design issues they are described as follows: 

1. Store and Forward packet switching:  

The host sends the packet to the nearest router. This packet is stored there until it has fully arrived 

once the link is fully processed by verifying the checksum then it is forwarded to the next router till 

it reaches the destination. This mechanism is called “Store and Forward packet switching.” 

https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.geeksforgeeks.org/introduction-of-classful-ip-addressing/
https://www.geeksforgeeks.org/types-of-routing/


2. Services provided to Transport Layer:  

Through the network/transport layer interface, the network layer transfers it’s services to the 

transport layer. These services are described below. 

But before providing these services to the transfer layer following goals must be kept in mind :- 

• Offering services must not depend on router technology. 

• The transport layer needs to be protected from the type, number and topology of the available 

router. 

• The network addresses for the transport layer should use uniform numbering pattern also at LAN 

and WAN connections. 

Based on the connections there are 2 types of services provided: 

• Connectionless – The routing and insertion of packets into subnet is done individually. No 

added setup is required. 

• Connection-Oriented – Subnet must offer reliable service and all the packets must be 

transmitted over a single route. 

3. Implementation of Connectionless Service:  

Packet are termed as “datagrams” and corresponding subnet as “datagram subnets”. When the 

message size that has to be transmitted is 4 times the size of the packet, then the network layer 

divides into 4 packets and transmits each packet to router via. a few protocol. Each data packet has 

destination address and is routed independently irrespective of the packets. 

4. Implementation of Connection Oriented service: 

To use a connection-oriented service, first we establishes a connection, use it and then release it. In 

connection-oriented services, the data packets are delivered to the receiver in the same order in 

which they have been sent by the sender. 

It can be done in either two ways: 

▪ Circuit Switched Connection – A dedicated physical path or a circuit is established between 

the communicating nodes and then data stream is transferred. 

▪ Virtual Circuit Switched Connection – The data stream is transferred over a packet 

switched network, in such a way that it seems to the user that there is a dedicated path from 

the sender to the receiver. A virtual path is established here. While, other connections may also 

be using the same path. 

Routing algorithm: 

✓ In order to transfer the packets from source to the destination, the network layer must determine 

the best route through which packets can be transmitted. 

✓ Whether the network layer provides datagram service or virtual circuit service, the main job of 

the network layer is to provide the best route. The routing protocol provides this job. 

https://www.geeksforgeeks.org/transport-layer-responsibilities/
https://www.geeksforgeeks.org/difference-between-connection-oriented-and-connection-less-services/


✓ The routing protocol is a routing algorithm that provides the best path from the source to the 

destination. The best path is the path that has the "least-cost path" from source to the destination. 

✓ Routing is the process of forwarding the packets from source to the destination but the best route 

to send the packets is determined by the routing algorithm. 

Classification of a Routing algorithm: 

The Routing algorithm is divided into two categories: 

o Adaptive Routing algorithm 

o Non-adaptive Routing algorithm 

 

Adaptive Routing algorithm: 

o An adaptive routing algorithm is also known as dynamic routing algorithm. 

o This algorithm makes the routing decisions based on the topology and network traffic. 

o The main parameters related to this algorithm are hop count, distance and estimated transit time. 

An adaptive routing algorithm can be classified into three parts: 

o Centralized algorithm: It is also known as global routing algorithm as it computes the least-

cost path between source and destination by using complete and global knowledge about the 

network. This algorithm takes the connectivity between the nodes and link cost as input, and this 

information is obtained before actually performing any calculation. Link state algorithm is 

referred to as a centralized algorithm since it is aware of the cost of each link in the network. 

o Isolation algorithm: It is an algorithm that obtains the routing information by using local 

information rather than gathering information from other nodes. 

o Distributed algorithm: It is also known as decentralized algorithm as it computes the least-cost 

path between source and destination in an iterative and distributed manner. In the decentralized 

algorithm, no node has the knowledge about the cost of all the network links. In the beginning, 

a node contains the information only about its own directly attached links and through an iterative 

process of calculation computes the least-cost path to the destination. A Distance vector 

algorithm is a decentralized algorithm as it never knows the complete path from source to the 

destination; instead it knows the direction through which the packet is to be forwarded along 

with the least cost path. 



Non-Adaptive Routing algorithm: 

o Non Adaptive routing algorithm is also known as a static routing algorithm. 

o When booting up the network, the routing information stores to the routers. 

o Non Adaptive routing algorithms do not take the routing decision based on the network topology 

or network traffic. 

The Non-Adaptive Routing algorithm is of two types: 

Flooding: In case of flooding, every incoming packet is sent to all the outgoing links except the one 

from it has been reached. The disadvantage of flooding is that node may contain several copies of a 

particular packet. 

Random walks: In case of random walks, a packet sent by the node to one of its neighbors randomly. 

An advantage of using random walks is that it uses the alternative routes very efficiently. 

Differences b/w Adaptive and Non-Adaptive Routing Algorithm 

Basis Of 

Comparison 

Adaptive Routing algorithm Non-Adaptive Routing 

algorithm 

Define Adaptive Routing algorithm is 

an algorithm that constructs the 

routing table based on the 

network conditions. 

The Non-Adaptive Routing 

algorithm is an algorithm that 

constructs the static table to 

determine which node to send 

the packet. 

Usage Adaptive routing algorithm is 

used by dynamic routing. 

The Non-Adaptive Routing 

algorithm is used by static 

routing. 

Routing 

decision 

Routing decisions are made 

based on topology and network 

traffic. 

Routing decisions are the static 

tables. 

Categorization The types of adaptive routing 

algorithm, are Centralized, 

isolation and distributed 

algorithm. 

The types of Non Adaptive 

routing algorithm are flooding 

and random walks. 

Complexity Adaptive Routing algorithms 

are more complex. 

Non-Adaptive Routing 

algorithms are simple. 

Flooding: 

Flooding is a non-adaptive routing technique following this simple method: when a data packet arrives 

at a router, it is sent to all the outgoing links except the one it has arrived on. 



For example, let us consider the network in the figure, having six routers that are connected through 

transmission lines. 

 

Using flooding technique: 

• An incoming packet to A, will be sent to B, C and D. 

• B will send the packet to C and E. 

• C will send the packet to B, D and F. 

• D will send the packet to C and F. 

• E will send the packet to F. 

• F will send the packet to C and E. 

Types of Flooding: 

Flooding may be of three types − 

• Uncontrolled flooding − Here, each router unconditionally transmits the incoming data packets 

to all its neighbours. 

• Controlled flooding − They use some methods to control the transmission of packets to the 

neighbouring nodes. The two popular algorithms for controlled flooding are Sequence Number 

Controlled Flooding (SNCF) and Reverse Path Forwarding (RPF). 

• Selective flooding − Here, the routers don't transmit the incoming packets only along those paths 

which are heading towards approximately in the right direction, instead of every available paths. 

Advantages of Flooding: 

• It is very simple to setup and implement, since a router may know only its neighbours. 

• It is extremely robust. Even in case of malfunctioning of a large number routers, the packets find 

a way to reach the destination. 

• All nodes which are directly or indirectly connected are visited. So, there are no chances for any 

node to be left out. This is a main criteria in case of broadcast messages. 

• The shortest path is always chosen by flooding. 

Limitations of Flooding: 

• Flooding tends to create an infinite number of duplicate data packets, unless some measures are 

adopted to damp packet generation. 



• It is wasteful if a single destination needs the packet, since it delivers the data packet to all nodes 

irrespective of the destination. 

• The network may be clogged with unwanted and duplicate data packets. This may hamper 

delivery of other data packets. 

Distance Vector Routing Algorithm: 

o The Distance vector algorithm is iterative, asynchronous and distributed. 

o Distributed: It is distributed in that each node receives information from one or more of 

its directly attached neighbors, performs calculation and then distributes the result back 

to its neighbors. 

o Iterative: It is iterative in that its process continues until no more information is available 

to be exchanged between neighbors. 

o Asynchronous: It does not require that all of its nodes operate in the lock step with each 

other. 

o The Distance vector algorithm is a dynamic algorithm. 

o It is mainly used in ARPANET, and RIP. 

o Each router maintains a distance table known as Vector. 

Three Keys to understand the working of Distance Vector Routing Algorithm: 

o Knowledge about the whole network: Each router shares its knowledge through the entire 

network. The Router sends its collected knowledge about the network to its neighbors. 

o Routing only to neighbors: The router sends its knowledge about the network to only those 

routers which have direct links. The router sends whatever it has about the network through the 

ports. The information is received by the router and uses the information to update its own 

routing table. 

o Information sharing at regular intervals: Within 30 seconds, the router sends the information 

to the neighboring routers. 

Distance Vector Routing Algorithm: 

Let dx(y) be the cost of the least-cost path from node x to node y. The least costs are related by Bellman-

Ford equation, 

dx(y) = minv{c(x,v) + dv(y)} 

Where the minv is the equation taken for all x neighbors. After traveling from x to v, if we consider the 

least-cost path from v to y, the path cost will be c(x,v)+dv(y). The least cost from x to y is the minimum 

of c(x,v)+dv(y) taken over all neighbors. 

With the Distance Vector Routing algorithm, the node x contains the following routing 

information: 

o For each neighbor v, the cost c(x,v) is the path cost from x to directly attached neighbor, v. 



o The distance vector x, i.e., Dx = [ Dx(y) : y in N ], containing its cost to all destinations, y, in N. 

o The distance vector of each of its neighbors, i.e., Dv = [ Dv(y) : y in N ] for each neighbor v of 

x. 

Distance vector routing is an asynchronous algorithm in which node x sends the copy of its distance 

vector to all its neighbors. When node x receives the new distance vector from one of its neighboring 

vector, v, it saves the distance vector of v and uses the Bellman-Ford equation to update its own distance 

vector. The equation is given below: 

dx(y) = minv{ c(x,v) + dv(y)}     for each node y in N 

The node x has updated its own distance vector table by using the above equation and sends its updated 

table to all its neighbors so that they can update their own distance vectors. 

Let's understand through an example: 

Sharing Information: 

 

o In the above figure, each cloud represents the network, and the number inside the cloud 

represents the network ID. 

o All the LANs are connected by routers, and they are represented in boxes labeled as A, B, C, D, 

E, F. 

o Distance vector routing algorithm simplifies the routing process by assuming the cost of every 

link is one unit. Therefore, the efficiency of transmission can be measured by the number of links 

to reach the destination. 

o In Distance vector routing, the cost is based on hop count. 

Routing Table: 

Two processes occur: 

o Creating the Table 

o Updating the Table 

Creating the Table: 

Initially, the routing table is created for each router that contains atleast three types of information such 

as Network ID, the cost and the next hop. 



 

o NET ID: The Network ID defines the final destination of the packet. 

o Cost: The cost is the number of hops that packet must take to get there. 

o Next hop: It is the router to which the packet must be delivered. 

 

o In the above figure, the original routing tables are shown of all the routers. In a routing table, the 

first column represents the network ID, the second column represents the cost of the link, and 

the third column is empty. 

o These routing tables are sent to all the neighbors. 

For Example: 

1. A sends its routing table to B, F & E.   

2. B sends its routing table to A & C.   

3. C sends its routing table to B & D.   

4. D sends its routing table to E & C.   

5. E sends its routing table to A & D.   

6. F sends its routing table to A.   

Updating the Table: 

o When A receives a routing table from B, then it uses its information to update the table. 

o The routing table of B shows how the packets can move to the networks 1 and 4. 

o The B is a neighbor to the A router, the packets from A to B can reach in one hop. So, 1 is added 

to all the costs given in the B's table and the sum will be the cost to reach a particular network. 



 

o After adjustment, A then combines this table with its own table to create a combined table. 

 

o The combined table may contain some duplicate data. In the above figure, the combined table of 

router A contains the duplicate data, so it keeps only those data which has the lowest cost. For 

example, A can send the data to network 1 in two ways. The first, which uses no next router, so 

it costs one hop. The second requires two hops (A to B, then B to Network 1). The first option 

has the lowest cost, therefore it is kept and the second one is dropped. 

 

o The process of creating the routing table continues for all routers. Every router receives the 

information from the neighbors, and update the routing table. 

Hierarchical routing: 

In hierarchical routing, the routers are divided into regions. Each router has complete details about how 

to route packets to destinations within its own region. But it does not have any idea about the internal 

structure of other regions. 

As we know, in both LS and DV algorithms, every router needs to save some information about other 

routers. When network size is growing, the number of routers in the network will increase. Therefore, 

the size of routing table increases, then routers cannot handle network traffic as efficiently. To overcome 

this problem we are using hierarchical routing. 

In hierarchical routing, routers are classified in groups called regions. Each router has information about 

the routers in its own region and it has no information about routers in other regions. So, routers save 

one record in their table for every other region. 



For huge networks, a two-level hierarchy may be insufficient hence, it may be necessary to group the 

regions into clusters, the clusters into zones, the zones into groups and so on. 

Example: 

Consider an example of two-level hierarchy with five regions as shown in figure − 

 

Let see the full routing table for router 1A which has 17 entries, as shown below − 

Full Table for 1A 

Dest. Line Hops 

1A - - 

1B 1B 1 

1C 1C 1 

2A 1B 2 

2B 1B 3 

2C 1B 3 

2D 1B 4 

3A 1C 3 

3B 1C 2 

4A 1C 3 

4B 1C 4 

4C 1C 4 

5A 1C 4 

5B 1C 5 

5C 1B 5 

5D 1C 6 

5E 1C 5 

When routing is done hierarchically then there will be only 7 entries as shown below − 

Hierarchical Table for 1A 

Dest. Line Hops 



1A - - 

1B 1B 1 

1C 1C 1 

2 1B 2 

3 1C 2 

4 1C 3 

5 1C 4 

Unfortunately, this reduction in table space comes with the increased path length. 

Explanation: 

Step 1 − For example, the best path from 1A to 5C is via region 2, but hierarchical  

routing of all traffic to region 5 goes via region 3 as it is better for most of the other destinations of 

region 5. 

Step 2 − Consider a subnet of 720 routers. If no hierarchy is used, each router will have 720 entries in 

its routing table. 

Step 3 − Now if the subnet is partitioned into 24 regions of 30 routers each, then each router will require 

30 local entries and 23 remote entries for a total of 53 entries. 

Example: 

If the same subnet of 720 routers is partitioned into 8 clusters, each containing 9 regions and each region 

containing 10 routers. Then what will be the total number of table entries in each router. 

Solution: 

10 local entries + 8 remote regions + 7 clusters = 25 entries. 

Link State Routing: 

Link state routing is a technique in which each router shares the knowledge of its neighborhood with 

every other router in the internetwork. 

The three keys to understand the Link State Routing algorithm: 

o Knowledge about the neighborhood: Instead of sending its routing table, a router sends the 

information about its neighborhood only. A router broadcast its identities and cost of the directly 

attached links to other routers. 

o Flooding: Each router sends the information to every other router on the internetwork except its 

neighbors. This process is known as Flooding. Every router that receives the packet sends the 

copies to all its neighbors. Finally, each and every router receives a copy of the same information. 

o Information sharing: A router sends the information to every other router only when the change 

occurs in the information. 



Link State Routing has two phases: 

Reliable Flooding: 

o Initial state: Each node knows the cost of its neighbors. 

o Final state: Each node knows the entire graph. 

Route Calculation: 

Each node uses Dijkstra's algorithm on the graph to calculate the optimal routes to all nodes. 

o The Link state routing algorithm is also known as Dijkstra's algorithm which is used to find the 

shortest path from one node to every other node in the network. 

o The Dijkstra's algorithm is an iterative, and it has the property that after kth iteration of the 

algorithm, the least cost paths are well known for k destination nodes. 

Let's describe some notations: 

o c( i , j): Link cost from node i to node j. If i and j nodes are not directly linked, then c(i , j) = ∞. 

o D(v): It defines the cost of the path from source code to destination v that has the least cost 

currently. 

o P(v): It defines the previous node (neighbor of v) along with current least cost path from source 

to v. 

o N: It is the total number of nodes available in the network. 

Algorithm: 

Initialization 

N = {A}     // A is a root node. 

for all nodes v 

if v adjacent to A 

then D(v) = c(A,v) 

else D(v) = infinity 

loop 

find w not in N such that D(w) is a minimum. 

Add w to N 

Update D(v) for all v adjacent to w and not in N: 

D(v) = min(D(v) , D(w) + c(w,v)) 

Until all nodes in N 

In the above algorithm, an initialization step is followed by the loop. The number of times the loop is 

executed is equal to the total number of nodes available in the network. 

Let's understand through an example: 



 

                     In the above figure, source vertex is A. 

Congestion Control Algorithm: 

What is congestion? 

A state occurring in network layer when the message traffic is so heavy that it slows down network 

response time. 

Effects of Congestion: 

• As delay increases, performance decreases. 

• If delay increases, retransmission occurs, making situation worse. 

Congestion control algorithms: 

1.  Congestion Control is a mechanism that controls the entry of data packets into the network, 

enabling a better use of a shared network infrastructure and avoiding congestive collapse.  

2. Congestive-Avoidance Algorithms (CAA) are implemented at the TCP layer as the mechanism 

to avoid congestive collapse in a network. 

3. There are two congestion control algorithm which are as follows:  

Leaky Bucket Algorithm: 

➢ The leaky bucket algorithm discovers its use in the context of network traffic shaping or rate-

limiting.  

➢ A leaky bucket execution and a token bucket execution are predominantly used for traffic 

shaping algorithms. 

➢ This algorithm is used to control the rate at which traffic is sent to the network and shape the 

burst traffic to a steady traffic stream. 

➢ The disadvantages compared with the leaky-bucket algorithm are the inefficient use of 

available network resources. 

➢ The large area of network resources such as bandwidth is not being used effectively. 

Let us consider an example to understand: 



Imagine a bucket with a small hole in the bottom.No matter at what rate water enters the bucket, the 

outflow is at constant rate.When the bucket is full with water additional water entering spills over the 

sides and is lost. 

 

Similarly, each network interface contains a leaky bucket and the following steps are involved in 

leaky bucket algorithm: 

1.  When host wants to send packet, packet is thrown into the bucket. 

2.  The bucket leaks at a constant rate, meaning the network interface transmits packets at a 

constant rate. 

3.  Bursty traffic is converted to a uniform traffic by the leaky bucket. 

4. In practice the bucket is a finite queue that outputs at a finite rate. 

Token bucket Algorithm: 

✓ The leaky bucket algorithm has a rigid output design at an average rate independent of the 

bursty traffic. 

✓ In some applications, when large bursts arrive, the output is allowed to speed up. This calls 

for a more flexible algorithm, preferably one that never loses information. Therefore, a token 

bucket algorithm finds its uses in network traffic shaping or rate-limiting. 

✓ It is a control algorithm that indicates when traffic should be sent. This order comes based 

on the display of tokens in the bucket.  

✓ The bucket contains tokens. Each of the tokens defines a packet of predetermined size. 

Tokens in the bucket are deleted for the ability to share a packet. 

✓ When tokens are shown, a flow to transmit traffic appears in the display of tokens. 

✓  No token means no flow sends its packets. Hence, a flow transfers traffic up to its peak burst 

rate in good tokens in the bucket. 

 

 

Need of token bucket Algorithm:-  

https://media.geeksforgeeks.org/wp-content/uploads/leaky.jpg


The leaky bucket algorithm enforces output pattern at the average rate, no matter how bursty the traffic 

is. So in order to deal with the bursty traffic we need a flexible algorithm so that the data is not lost. 

One such algorithm is token bucket algorithm. 

  

Steps of this algorithm can be described as follows: 

1. In regular intervals tokens are thrown into the bucket. ƒ 

2. The bucket has a maximum capacity. ƒ 

3. If there is a ready packet, a token is removed from the bucket, and the packet is sent. 

4. If there is no token in the bucket, the packet cannot be sent. 

Let’s understand with an example, 

In figure (A) we see a bucket holding three tokens, with five packets waiting to be transmitted. For a 

packet to be transmitted, it must capture and destroy one token. In figure (B) We see that three of the 

five packets have gotten through, but the other two are stuck waiting for more tokens to be generated. 

Ways in which token bucket is superior to leaky bucket: The leaky bucket algorithm controls the 

rate at which the packets are introduced in the network, but it is very conservative in nature. Some 

flexibility is introduced in the token bucket algorithm. In the token bucket, algorithm tokens are 

generated at each tick (up to a certain limit). For an incoming packet to be transmitted, it must capture 

a token and the transmission takes place at the same rate. Hence some of the busty packets are 

transmitted at the same rate if tokens are available and thus introduces some amount of flexibility in 

the system. 

 

Formula: M * s = C + ? * s where S – is time taken M – Maximum output rate ? – Token arrival rate 

C – Capacity of the token bucket in byte 

Let’s understand with an example, 

  

 

 

Admission Control: 

https://media.geeksforgeeks.org/wp-content/uploads/leakybuk.jpg


The presence of congestion means the load is greater than the resources available over a network to 

handle. Generally, we will get an idea to reduce the congestion by trying to increase the resources or 

decrease the load, but it is not that much of a good idea. 

It is one of techniques that is widely used in virtual-circuit networks to keep congestion at bay. The idea 

is do not set up a new virtual circuit unless the network can carry the added traffic without becoming 

congested. 

Admission control can also be combined with traffic aware routing by considering routes around traffic 

hotspots as part of the setup procedure. 

Example: 

Take two networks (a) A congestion network and (b) The portion of the network that is not congested. 

A virtual circuit A to B is also shown below − 

 

Explanation: 

Step 1 − Suppose a host attached to router A wants to set up a connection to a host attached to router B. 

Normally this connection passes through one of the congested routers. 

Step 2 − To avoid this situation, we can redraw the network as shown in figure (b), removing the 

congested routers and all of their lines. 

Step 3 − The dashed line indicates a possible route for the virtual circuit that avoids the congested 

routers. 

Choke Packets: 



This approach can be used in virtual circuits as well as in the datagram subnets. In this technique, each 

router associates a real variable with each of its output lines. 

This real variable says “u” has a value between 0and1 and it indicates the percentage utilization of that 

line. If the value of “u” goes above the threshold, then that output line will enter into a “warning” state. 

 

The router will check each newly arriving packet to see if its output line is in the “warning state”. If it 

is in the warning state, then the router will send back a choke packet signal to the sending host. 

The sender host will not generate any more choke packets. Several variations on the congestion control 

algorithms have been proposed, depending on the value of thresholds. 

Hop-by-hop choke packets: 

This technique is an advancement over the Choked packet method. At high speed over long distances, 

sending a packet back to the source doesn’t help much, because by the time the choke packet reaches 

the source, already a lot of packets destined for the same original the destination would be out from the 

source. 

So, to help this, Hop-by-Hop Choke packets are used. Over long distances or at high speeds choke p y 

packets are not very effective. A more efficient the method is to send choke packets hop-by-hop. 

This requires each hop to reduce its transmission even before the choke packet arrives at the source. 



 

Figure Depicts the functioning of Hop-by-Hop choke packets, (a) Heavy traffic between nodes P and Q, 

(b) Node Q sends the Choke packet to P, (c) Choke packet reaches R and the flow between R and Q is 

curtailed down, the Choke packer reaches P and Produces the flow out. 

 

 
 

 


	Data Link Layer:
	Following services are provided by the Data Link Layer:

	Error Detection:
	Types of Errors:
	Single-Bit Error:
	Burst Error:
	Error Detecting Techniques:
	Single Parity Check:
	Drawbacks of Single Parity Checking:

	Two-Dimensional Parity Check:
	Drawbacks of 2D Parity Check:

	Checksum:
	Checksum Generator:

	Cyclic Redundancy Check (CRC):
	CRC Generator:
	CRC Checker:


	Error Correction:
	Hamming Code:
	Algorithm of Hamming code:

	Relationship b/w Error position & binary number:
	Determining the position of the redundant bits:
	Determining the Parity bits:
	Determining the r1 bit:
	Determining r2 bit:
	Determining r4 bit:

	Unrestricted Simplex Protocol:
	Simplex Stop and Wait protocol:
	Simplex Protocol for Noisy Channel:

	Sliding Window Protocol:
	Types of Sliding Window Protocol:
	Go-Back-N ARQ:
	Selective Repeat ARQ:
	Difference between the Go-Back-N ARQ and Selective Repeat ARQ:


	Network Layer:
	The main functions performed by the network layer are:
	Services Provided by the Network Layer:

	Network Layer Design:
	Routing algorithm:
	Classification of a Routing algorithm:
	Adaptive Routing algorithm:
	Non-Adaptive Routing algorithm:
	Differences b/w Adaptive and Non-Adaptive Routing Algorithm

	Flooding:
	Types of Flooding:
	Advantages of Flooding:
	Limitations of Flooding:

	Distance Vector Routing Algorithm:
	Three Keys to understand the working of Distance Vector Routing Algorithm:
	Distance Vector Routing Algorithm:
	Sharing Information:
	Routing Table:
	Creating the Table:
	Updating the Table:


	Hierarchical routing:
	Example:
	Full Table for 1A
	Hierarchical Table for 1A
	Explanation:
	Example:
	Solution:

	Link State Routing:
	Link State Routing has two phases:
	Reliable Flooding:
	Route Calculation:

	Let's describe some notations:
	Algorithm:

	Congestion Control Algorithm:
	Admission Control:
	The presence of congestion means the load is greater than the resources available over a network to handle. Generally, we will get an idea to reduce the congestion by trying to increase the resources or decrease the load, but it is not that much of a ...
	Example:
	Explanation:


